Skip to main content
Log in

Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Kluyveromyces marxianus CCT 7735 offers advantages to ethanol production over Saccharomyces cerevisiae, including thermotolerance and the ability to convert lactose to ethanol. However, its growth is impaired at high ethanol concentrations. Herein we report on the protein and intracellular metabolite profiles of K. marxianus at 1 and 4 h under ethanol exposure. The concentration of some amino acids, trehalose and ergosterol were also measured. We observed that proteins and metabolites from carbon pathways and translation were less abundant, mainly at 4 h of ethanol stress. Nevertheless, the concentration of some amino acids and trehalose increased at 8 and 12 h under ethanol stress, indicating an adaptive response. Moreover, our results show that the abundance of proteins and metabolites related to the oxidative stresses responses increased. The results obtained in this study provide insights into understanding the physiological changes in K. marxianus under ethanol stress, indicating possible targets for ethanol tolerant strains construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  CAS  PubMed  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498(1):98–103

    Article  CAS  PubMed  Google Scholar 

  • Billard P, Ménart S, Fleer R, Bolotin-Fukuhara M (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162(1):93–97

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Canelas AB, Ras C, Pierick AT, Van Dam JC, Heijnen HJ, Van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239

    Article  CAS  Google Scholar 

  • Chandler M, Stanley GA, Rogers P, Chambers P (2004) A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol 54:427–454

    CAS  Google Scholar 

  • Chen Z, Zheng Z, Yi C, Wang F, Niu Y, Li H (2016) Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process. RSC Adv 6:105046–105055

    Article  CAS  Google Scholar 

  • Cheng Y, Du Z, Zhu H, Guo X, He X (2016) Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci Rep 6:31311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92

    Article  CAS  Google Scholar 

  • Costa DA, Souza CJA, Costa PS, Rodrigues MQRB, Santos AF, Lopes MR et al (2014) Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl Microbiol Biotechnol 98:3829–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox HD, Chao CK, Patel SA, Thompson CM (2008) Efficient digestion and mass spectral analysis of vesicular glutamate transporter 1: a recombinant membrane protein expressed in yeast. J Proteome Res 7(2):570–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadros-Inostroza A, Caldana C, Redestig H, Lisec J, Pena-Cortes H, Willmitzer L et al (2009) TargetSearch—a bioconductor package for the efficient pre-processing of GC–MS metabolite profiling data. BMC Bioinform 10:428

    Article  CAS  Google Scholar 

  • da Silveira FA, Diniz RHS, Sampaio GMS et al (2018) Sugar transport systems in Kluyveromyces marxianus CCT 7735. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. https://doi.org/10.1007/s10482-018-1143-4

    Article  Google Scholar 

  • de Bruijne AW, Schuddemat J, van den Broek PJA, van Steveninck J (1988) Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. Biochim Biophys Acta 939:569–576

    Article  PubMed  Google Scholar 

  • Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H (2009) Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst 32(5):681–688

    Article  CAS  Google Scholar 

  • Diniz RH, Silveira WB, Fietto LG, Passos FM (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie van Leeuwenhoek 101(3):541–550

    Article  CAS  PubMed  Google Scholar 

  • Diniz R, Rodrigues M, Fietto L, Passos F, Silveira W (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 2:111–117

    Article  Google Scholar 

  • Diniz RHS, Villada JC, Alvim MCT, Vidigal PMP, Vieira NM, Lamas-Maceiras M et al (2017) Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl Microbiol Biotechnol 101(18):6969–6980

    Article  CAS  PubMed  Google Scholar 

  • Doğan A, Demirci S, Aytekin AO, Şahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174(1):28–42

    Article  PubMed  CAS  Google Scholar 

  • Du X, Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75(6):1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Ferreira T, Mason AB, Slayman CW (2001) The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins. J Biol Chem 276(32):29613–29616

    Article  CAS  PubMed  Google Scholar 

  • Ferreira P, Silveira F, Santos R, Genier H, Diniz R, Ribeiro JI et al (2015) Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Sci Biotechnol 24(4):1421–1427

    Article  CAS  Google Scholar 

  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750

    Article  CAS  PubMed  Google Scholar 

  • GE Healthcare (2004) Colloidal Coomassie staining procedure. In: 2-D Electrophoresis. GE Healthcare, United Kingdom, pp 1–159

  • Hashim Z, Fukusaki E (2016) Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance. In: International conference on chemical engineering and bioprocess engineering - Earth and environmental science, vol 36

  • Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80(10):2966–2972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill CB, Roessner U (2013) Metabolic profiling of plants by GC–MS. In: The handbook of plant metabolomics. First Ed. Wiley-VCH Verlag GmbH & Co. KGaA, pp 3–23

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y et al (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  PubMed  Google Scholar 

  • Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM et al (2010) Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149(1–2):52–59

    Article  CAS  PubMed  Google Scholar 

  • International Energy Agency (2016) World energy outlook 2016. In World energy outlook 2016 (eds). International Energy Agency: Paris, p 684

  • Jelen P (2009) Dried whey, whey proteins, lactose and lactose derivative products. In: Tamime AY (ed) Dairy powders and concentrated products. Wiley-Blackwell, Oxford, pp 255–267

    Chapter  Google Scholar 

  • Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79:273–283

    Article  CAS  PubMed  Google Scholar 

  • Kasavi C, Eraslan S, Oner ET, Kirdar B (2016) An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae. Mol BioSyst 12(2):464–476

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim J, Song JH, Jung YH, Choi IS, Choi W et al (2016) Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Biotechnol J 11(9):1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Lahtvee PJ, Kumar R, Hallström BM, Nielsen J (2016) Adaptation to different types of stress converge on mitochondrial metabolism. Mol Biol Cell 27(15):2505–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane MM, Burke N, Karreman R, Wolfe KH, O’byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie van Leeuwenhoek 100(4):507–519

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jin Y, Cha Y, Seo J (2017) Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour Technol 228:355–361

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(3):829–845

    Article  CAS  PubMed  Google Scholar 

  • Mahmud SA, Hirasawa T, Furusawa C, Yoshikawa K, Shimizu H (2012) Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng 113:526–528

    Article  CAS  PubMed  Google Scholar 

  • Marza E, Camougrand N, Manon S (2002) Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Lett 521:47–52

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Quintero J, Conejeros R, Aroca G (2015) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sustain Energy Rev 42:1349–1361

    Article  CAS  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-García J, García-Martínez T, Moreno J, Millán MC, Mauricio JC (2014) A proteomic and metabolomic approach for understanding the role of the flor yeast mitochondria in the velum formation. Int J Food Microbiol 172:21–29

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R (2016) Ethanol cellular defense induce unfolded protein response in yeast. Front Microbiol 18(7):189

    Google Scholar 

  • Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, Makris AM (2007) Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. J Biol Chem 282(49):36010–36023

    Article  CAS  PubMed  Google Scholar 

  • Ohta E, Nakayama Y, Mukai Y, Bamba T, Fukusaki E (2016) Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 121(4):399–405

    Article  CAS  PubMed  Google Scholar 

  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    Article  CAS  PubMed  Google Scholar 

  • Rosa MF, Sá-Correia I (1992) Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol 14:23–27

    Article  CAS  Google Scholar 

  • Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B (2009) The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. J Appl Microbiol 107:47–55

    Article  CAS  PubMed  Google Scholar 

  • Rossouw D, Dool AH, Jacobson D, Bauer FF (2010) Comparative transcriptomic and proteomic profiling of industrial wine yeast strains. Appl Environ Microbiol 76(12):3911–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampedro JG, Nájera H, Uribe-Carvajal S, Ruiz-Granados YG (2014) Mapping the ATP binding site in the plasma membrane H(+)-ATPase from Kluyveromyces lactis. J Fluoresc 24(6):1849–1859

    Article  CAS  PubMed  Google Scholar 

  • Santos RM, Nogueira FC, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio EC (2017) Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J Proteom 151:114–121

    Article  CAS  Google Scholar 

  • Savaliya ML, Dhorajiya BD, Dholakiya BZ (2015) Recent advancement in production of liquid biofuels from renewable resources: a review. Res Chem Intermed 41:475–509

    Article  CAS  Google Scholar 

  • Schabort DTWP, Letebele PK, Steyn L, Kilian SG, du Preez JC (2016) Differential RNA-seq, multi-network analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a compartmentalised response to xylose. PLoS ONE 11(6):e0156242

    Article  PubMed Central  CAS  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860

    Article  CAS  Google Scholar 

  • Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb Technol 36:930–936

    Article  CAS  Google Scholar 

  • Silveira WB, Diniz RHS, Cerdan ME, Gonzalez-Siso MI, Souza RA, Vidigal PMP et al (2014) Genomic sequence of the yeast Kluyveromyces marxianus CCT 7735 (UFV-3), a highly lactose-fermenting yeast isolated from the Brazilian dairy industry. Genome Announc 2:e01136-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sossna R (2014) The world of whey got together: 7th international Whey conference. Int Dairy Magaz 10:22–23

    Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chambers P, Stanley G (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 109(1):13–24

    CAS  Google Scholar 

  • Thangavelu SK, Ahmed AS, Ani FN (2016) Review on bioethanol as alternative fuel for spark ignition engines. Renew Sustain Energy Rev 56:820–835

    Article  CAS  Google Scholar 

  • Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G et al (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter EW, Collinson EJ, Dawes IW, Grant CM (2006) Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 72(7):4885–4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102(3):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venditti R, Wilson C, Matteis MA (2014) Exiting the ER: what we know and what we don’t. Trends Cell Biol 24:9–18

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J (2014) Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteom 101:102–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Besides, this study was supported by the Brazilian Agencies Foundation for Research Support of the State of Minas Gerais (FAPEMIG) as well as National Science and Technology Development Council (CNPq). The authors thank the Center for Analysis of Biomolecules at Universidade Federal de Viçosa for the equipment’s and software’s used in this study.

Author information

Authors and Affiliations

Authors

Contributions

Considering the involvement, we believe that it is appropriate to include the following authors in the manuscript: MCTA, CEV, EB, NMV, FAS, TRB, RHSD, AFB, DMSB, HJOR, WBS. Conceived of or designed study: WBS, HJOR and MCTA. Performed research: MCTA, CEV, EB, NMV, FAS, TRB, RHSD and AFB. Analyzed data and discussion relative: WBS, MCTA, CEV and EB. Wrote and revised the manuscript: WBS, FAS, DMSB and MCTA.

Corresponding author

Correspondence to Wendel Batista da Silveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvim, M.C.T., Vital, C.E., Barros, E. et al. Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses. Antonie van Leeuwenhoek 112, 827–845 (2019). https://doi.org/10.1007/s10482-018-01214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-01214-y

Keywords

Navigation