Skip to main content

Advertisement

Log in

Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. Additionally, the influence of these composites on cell viability, proliferation, and alkaline phosphatase (ALP) activity were investigated. The results revealed that the pH values of all BS groups (with or without SPG) increased over time. A significant mass loss was observed in all composites, mainly with higher SPG percentages. Additionaly, SEM micrographies demonstrated fibers of SPG into BS and material degradation over time. Moreover, FTIR spectral analysis revealed characteristic peaks of PMMA, BS, and SPG in BS/SPG composites. BS/SPG groups demonstrated a positive effect for fibroblast proliferation after 3 and 7 days of culture. Additionally, BS and BS/SPG formulations (at 10% and 20% of SPG) presented similar values of osteoblasts viability and proliferation after 7 days of culture. Furthermore, ALP activity demonstrated no significant difference between BS and BS/SPG scaffolds, at any composition. Based on the present in vitro results, it can be concluded that the incorporation of SPG into BS was possible and produced an improvement in the physical-chemical characteristics and in the biological performance of the graft especially the formulation with 80/20 and 90/10. Future research should focus on in vivo evaluations of this novel composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.

    Article  Google Scholar 

  2. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin. 2012;28:457–68. https://doi.org/10.1016/j.hcl.2012.08.001.

    Article  Google Scholar 

  3. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42:S3–15. https://doi.org/10.1016/j.injury.2011.06.015.

    Article  Google Scholar 

  4. Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M, et al. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg. 2018; 44(5):649–65. https://doi.org/10.1007/s00068-018-0906-y.

  5. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54. https://doi.org/10.1016/j.tibtech.2012.07.005.

    Article  CAS  Google Scholar 

  6. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, et al. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate). J Biomed Mater Res Part A. 2007;82:545–57. https://doi.org/10.1002/jbm.a.31165.

    Article  CAS  Google Scholar 

  7. Granito RN, Ribeiro DA, Renno AC, Ravagnani C, Bossini PS, Peitl-Filho O, et al. Effects of biosilicate and bioglass 45S5 on tibial bone consolidation on rats: a biomechanical and a histological study. J Mater Sci Mater Med. 2009;20:2521–6. https://doi.org/10.1007/s10856-009-3824-z.

    Article  CAS  Google Scholar 

  8. Oliveira FS, Pinfildi CE, Parizoto NA, Liebano RE, Bossini PS, Garcia EB, et al. Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon. Lasers Surg Med. 2009;41:271–6. https://doi.org/10.1002/lsm.20760.

    Article  Google Scholar 

  9. Bossini PS, Renno AC, Ribeiro DA, Fangel R, Peitl O, Zanotto ED, et al. Biosilicate(R) and low-level laser therapy improve bone repair in osteoporotic rats. J Tissue Eng Regen Med. 2011;5:229–37. https://doi.org/10.1002/term.309.

    Article  CAS  Google Scholar 

  10. Matsumoto MA, Caviquioli G, Biguetti CC, Holgado Lde A, Saraiva PP, Renno AC, et al. A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. J Mater Sci Mater Med. 2012;23:1447–56. https://doi.org/10.1007/s10856-012-4612-8.

    Article  CAS  Google Scholar 

  11. Kido HW, Oliveira P, Parizotto NA, Crovace MC, Zanotto ED, Peitl-Filho O, et al. Histopathological, cytotoxicity and genotoxicity evaluation of Biosilicate(R) glass-ceramic scaffolds. J Biomed Mater Res Part A. 2013;101:667–73. https://doi.org/10.1002/jbm.a.34360.

    Article  CAS  Google Scholar 

  12. Kido HW, Brassolatti P, Tim CR, Gabbai-Armelin PR, Magri AM, Fernandes KR, et al. Porous poly (D,L-lactide-co-glycolide) acid/biosilicate(R) composite scaffolds for bone tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2015;105:63–71. https://doi.org/10.1002/jbm.b.33536.

  13. Renno AC, Bossini PS, Crovace MC, Rodrigues AC, Zanotto ED, Parizotto NA. Characterization and in vivo biological performance of biosilicate. BioMed Res Int. 2013;2013:141427. https://doi.org/10.1155/2013/141427.

    Article  CAS  Google Scholar 

  14. Fernandes KR, Magri AMP, Kido HW, Ueno F, Assis L, Fernandes KPS, et al. Characterization and biological evaluation of the introduction of PLGA into biosilicate(R). J Biomed Mater Res B Appl Biomater. 2017;105:1063–74. https://doi.org/10.1002/jbm.b.33654.

    Article  CAS  Google Scholar 

  15. Välimäki VV, Aro HT. Molecular basis for the action of bioactive glasses as bone graft. Scand J Surg. 2006;95:95–102.

    Article  Google Scholar 

  16. Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed. 2004;15:543–62. https://doi.org/10.1163/156856204323005352.

    Article  CAS  Google Scholar 

  17. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31. https://doi.org/10.1016/j.biomaterials.2006.01.039.

    Article  CAS  Google Scholar 

  18. Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res Part B Appl Biomater. 2004;69:158–65. https://doi.org/10.1002/jbm.b.20035.

    Article  CAS  Google Scholar 

  19. Rizwan M, Hamdi M, Basirun WJ. Bioglass(R) 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res Part A. 2017;105:3197–223. https://doi.org/10.1002/jbm.a.36156.

    Article  CAS  Google Scholar 

  20. Silva TH, Moreira-Silva J, Marques AL, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. Mar drugs. 2014;12:5881–901. https://doi.org/10.3390/md12125881.

    Article  CAS  Google Scholar 

  21. Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, et al. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci. 2011;7:968–77.

    Article  CAS  Google Scholar 

  22. Gabbai-Armelin PR, Kido HW, Cruz MA, Prado JPS, Avanzi IR, Custodio MR, et al. Characterization and cytotoxicity evaluation of a marine sponge biosilica. Mar Biotechnol. 2019;21:65–75. https://doi.org/10.1007/s10126-018-9858-9.

    Article  CAS  Google Scholar 

  23. Green D, Howard D, Yang X, Kelly M, Oreffo RO. Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng. 2003;9:1159–66. https://doi.org/10.1089/10763270360728062.

    Article  CAS  Google Scholar 

  24. Iwatsubo T, Kishi R, Miura T, Ohzono T, Yamaguchi T. Formation of hydroxyapatite skeletal materials from hydrogel matrices via artificial biomineralization. J Phys Chem B. 2015;119:8793–9. https://doi.org/10.1021/acs.jpcb.5b03181.

    Article  CAS  Google Scholar 

  25. Exposito JY, Cluzel C, Garrone R, Lethias C. Evolution of collagens. Anat Rec. 2002;268:302–16. https://doi.org/10.1002/ar.10162.

    Article  CAS  Google Scholar 

  26. Swatschek D, Schatton W, Kellermann J, Muller WE, Kreuter J. Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm. 2002;53:107–13.

    Article  CAS  Google Scholar 

  27. Lopez-Heredia MA, Sa Y, Salmon P, de Wijn JR, Wolke JG, Jansen JA. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater. 2012;8:3120–7. https://doi.org/10.1016/j.actbio.2012.05.007.

    Article  CAS  Google Scholar 

  28. Wang L, Yoon DM, Spicer PP, Henslee AM, Scott DW, Wong ME, et al. Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction. J Biomed Mater Res Part B Appl Biomater. 2013;101:813–25. https://doi.org/10.1002/jbm.b.32885.

    Article  CAS  Google Scholar 

  29. Haach LCA, Purquerio BM, Silva NF Jr, Gaspar AMM, Fortulan CA. Comparison of two composites developed to be used as bone replacement–PMMA/bioglass 45S5® microfiber and PMMA/hydroxyapatite. Bioceram Dev Appl. 2014;4:71. https://doi.org/10.4172/2090-5025.1000071.

    Article  CAS  Google Scholar 

  30. Shin H, Quinten Ruhe P, Mikos AG, Jansen JA. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials. 2003;24:3201–11.

    Article  CAS  Google Scholar 

  31. Parisi JR, Fernandes KR, Avanzi IR, Dorileo BP, Santana AF, Andrade AL, et al. Incorporation of collagen from marine sponges (Spongin) into hydroxyapatite samples: characterization and in vitro biological evaluation. Mar Biotechnol. 2019;21:30–7. https://doi.org/10.1007/s10126-018-9855-z.

  32. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60. https://doi.org/10.1002/term.24.

    Article  CAS  Google Scholar 

  33. Peitl O, Zanotto ED, Serbena FC, Hench LL. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Acta Biomater. 2012;8:321–32. https://doi.org/10.1016/j.actbio.2011.10.014.

    Article  CAS  Google Scholar 

  34. Oryan A, Baghaban Eslaminejad M, Kamali A, Hosseini S, Sayahpour FA, Baharvand H. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J Biomed Mater Res Part B Appl Biomater. 2019;107:50–64. https://doi.org/10.1002/jbm.b.34094.

  35. Lim HK, Byun SH, Woo JM, Kim SM, Lee SM, Kim BJ, et al. Biocompatibility and biocorrosion of hydroxyapatite-coated magnesium plate: animal experiment. Materials. 2017;10: 1149. https://doi.org/10.3390/ma10101149.

  36. Liga Berzina-Cimdina and Natalija Borodajenko (April 25th 2012). Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectroscopy - Materials Science, Engineering and Technology, Theophile Theophanides, IntechOpen, DOI: 10.5772/36942. Available from: https://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology/research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy.

  37. Zdarta J, Norman LJ, Smulek W. Spongin-based scaffolds from hippospongia communis demosponge as an effective support for lipase immobilization. Catalysts. 2017;7:147.

    Article  Google Scholar 

  38. Gabbai-Armelin PR, Souza MT, Kido HW, Tim CR, Bossini PS, Magri AM, et al. Effect of a new bioactive fibrous glassy scaffold on bone repair. J Mater Sci Mater Med. 2015;26:177. https://doi.org/10.1007/s10856-015-5516-1.

    Article  CAS  Google Scholar 

  39. Gabbai-Armelin PR, Souza MT, Kido HW, Tim CR, Bossini PS, Fernandes KR, et al. Characterization and biocompatibility of a fibrous glassy scaffold. J Tissue Eng Regen Med. 2017;11:1141–51. https://doi.org/10.1002/term.2017.

    Article  CAS  Google Scholar 

  40. Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967–78. https://doi.org/10.1007/s10856-006-0432-z.

    Article  CAS  Google Scholar 

  41. Hench LL, Wilson J. An introduction to bioceramics. 2nd ed. London, U.K: Imperial College Press; 2013.

    Book  Google Scholar 

  42. Deng L, Li D, Yang Z, Xie X, Kang P. Repair of the calvarial defect in goat model using magnesium-doped porous hydroxyapatite combined with recombinant human bone morphogenetic protein-2. Bio-Med Mater Eng. 2017;28:361–77. https://doi.org/10.3233/BME-171678.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge São Paulo Research Foundation (FAPESP) and Prof. Dr. Márcio Reis Custódio from Department of General Physiology of the Institute of Biosciences (IB-USP) for the assistance with this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Fernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, K.R., Parisi, J.R., Magri, A.M.P. et al. Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. J Mater Sci: Mater Med 30, 64 (2019). https://doi.org/10.1007/s10856-019-6266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6266-2

Navigation