Skip to main content
Log in

Phenolic Compound Biotransformation by Trametes versicolor ATCC 200801 and Molecular Docking Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Trametes versicolor is a rich source of laccase (Tvlac). Laccases catalyze reactions that convert substituted phenol substrates into diverse derivatives through aromatic oxidation. We investigated methyl p-coumarate, methyl ferulate, and methyl caffeate biotransformation by Trametes versicolor ATCC 200801. Despite substrate similarity, the biotransformation reactions varied widely. Only methyl p-coumarate was converted into three derivatives. We isolated and identified the chemical structures of such derivatives by NMR and IR analysis. Hydroxylation, methylation, and hydrolysis were the main reactions resulting from the studied biotransformation. We also analyzed the interactions between Tvlac (PDB ID: 1GYC) and the three phenolic substrates by molecular docking simulations. The substituents in the phenol ring influenced substrate conformation and orientation in the Tvlac site. The biotransformation reaction selectivity correlated with the different binding energies to the Tvlac site. Our results demonstrated that docking studies successfully predict the biotransformation of cinnamic acid analogs by T. versicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lenardão, E. J., Freitag, R. A., Dabdoub, M. J., Batista, A. C. F., & da C Silveira, C. (2003). “Green chemistry”: os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Química Nova, 26(1), 123–129. https://doi.org/10.1590/S0100-40422003000100020.

    Article  Google Scholar 

  2. Hai-Feng, Z., Guo-Qing, H., Jing, L., Hui, R., Qi-He, C., Qiang, Z., & Hong-Bo, Z. (2008). Production of gastrodin through biotransformation of p-2-hydroxybenzyl alcohol by cultured cells of Armillaria luteo-virens Sacc. Enzyme and Microbial Technology, 43, 25–30. https://doi.org/10.1016/j.enzmictec.2008.03.007.

    Article  CAS  Google Scholar 

  3. Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Pedroza-Rodríguez, A. M., Rodríguez-Vásquez, R., & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27, 67–82. https://doi.org/10.1016/j.fbr.2013.07.001.

    Article  Google Scholar 

  4. Margot, J., Bennati-Granier, C., Maillard, J., Blánquez, P., Barry, D. A., & Holliger, C. (2013). Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express, 3(1), 63. https://doi.org/10.1186/2191-0855-3-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heinzkill, M., Bech, L., Halkier, T., Schneider, P., & Anke, T. (1998). Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology, 64, 1601–16056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Caparrós-Ruiz, D., Fornalé, S., Civardi, L., Puigdomènech, P., & Rigau, J. (2006). Isolation and characterisation of a family of laccases in maize. Plant Science, 171(2), 217–225. https://doi.org/10.1016/j.plantsci.2006.03.007.

    Article  CAS  Google Scholar 

  7. Ullah, M. A., Bedford, C. T., & Evans, C. S. (2000). Reactions of pentachlorophenol with laccase from Coriolus versicolor. Applied Microbiology and Biotechnology, 53(2), 230–234. https://doi.org/10.1007/s002530050013.

    Article  CAS  PubMed  Google Scholar 

  8. Abadulla, E., Tzanov, T., Costa, S., Robra, K.-H., Cavaco-Paulo, A., & Gubitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 66(8), 3357–3362. https://doi.org/10.1128/AEM.66.8.3357-3362.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology, 24(5), 219–226. https://doi.org/10.1016/j.tibtech.2006.03.006.

    Article  CAS  PubMed  Google Scholar 

  10. Baldrian, P. (2006). Fungal laccases – occurrence and properties. FEMS Microbiology Reviews, 30(2), 215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, F., Hu, J.-H., Guo, C., & Liu, C.-Z. (2014). Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresource Technology, 166, 602–605. https://doi.org/10.1016/j.biortech.2014.05.068.

    Article  CAS  PubMed  Google Scholar 

  12. Iimura, Y., Sonoki, T., & Habe, H. (2018). Heterologous expression of Trametes versicolor laccase in Saccharomyces cerevisiae. Protein Expression and Purification, 141, 39–43. https://doi.org/10.1016/j.pep.2017.09.004.

    Article  CAS  PubMed  Google Scholar 

  13. Martínez-Sotres, C., Rutiaga-Quiñones, J. G., Herrera-Bucio, R., Gallo, M., & López-Albarrán, P. (2015). Molecular docking insights into the inhibition of laccase activity by medicarpin. Wood Science and Technology, 49(4), 857–868. https://doi.org/10.1007/s00226-015-0734-8.

    Article  CAS  Google Scholar 

  14. Kameshwar, A. K. S., Barber, R., & Qin, W. (2018). Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of laccases. Journal of Molecular Graphics and Modelling, 79, 15–26. https://doi.org/10.1016/j.jmgm.2017.10.019.

    Article  CAS  PubMed  Google Scholar 

  15. Mikolasch, A., Matthies, A., Lalk, M., & Schauer, F. (2008). Laccase-induced C–-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes. Applied Microbiology and Biotechnology, 80(3), 389–397. https://doi.org/10.1007/s00253-008-1595-y.

    Article  CAS  PubMed  Google Scholar 

  16. de Oliveira Silva, E., & Batista, R. (2017). Ferulic acid and naturally occurring compounds bearing a feruloyl moiety: a review on their structures, occurrence, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 16, 580–616. https://doi.org/10.1111/1541-4337.12266.

    Article  CAS  PubMed  Google Scholar 

  17. Stoilova, I., Krastanov, A., & Stanchev, V. (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Advances in Bioscience and Biotechnology, 01, 208–215. https://doi.org/10.4236/abb.2010.13029.

    Article  CAS  Google Scholar 

  18. Witayakran, S., & Ragauskas, A. J. (2009). Synthetic applications of laccase in Green Chemistry. Advanced Synthesis & Catalysis, 351, 1187–1209. https://doi.org/10.1002/adsc.200800775.

    Article  CAS  Google Scholar 

  19. Trejo-Hernandez, M. R., Lopez-Munguia, A., & Quintero Ramirez, R. (2001). Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochemistry, 36, 635–639. https://doi.org/10.1016/S0032-9592(00)00257-0.

    Article  CAS  Google Scholar 

  20. Falconnier, B., Lapierre, C., Lesage-Meessen, L., Yonnet, G., Brunerie, P., Colonna-Ceccaldi, B., & Asther, M. (1994). Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. Journal of Biotechnology, 37, 123–132. https://doi.org/10.1016/0168-1656(94)90003-5.

    Article  CAS  Google Scholar 

  21. Boaventura, M. A. D., Lopes, R. F. A. P., & Takahashi, J. A. (2004). Microorganisms as tools in modern chemistry: the biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Brazilian Journal of Microbiology, 35, 345–347.

    Article  CAS  Google Scholar 

  22. Garzón-Posse, F., Becerra-Figueroa, L., Hernández-Arias, J., & Gamba-Sánchez, D. (2018). Whole cells as biocatalysts in organic transformations. Molecules, 23(6), 1265. https://doi.org/10.3390/molecules23061265.

    Article  CAS  PubMed Central  Google Scholar 

  23. de Carvalho, C. C. C. R. (2017). Whole cell biocatalysts: essential workers from Nature to the industry. Microbial Biotechnology, 10(2), 250–263. https://doi.org/10.1111/1751-7915.12363.

    Article  PubMed  Google Scholar 

  24. Höring, P., Rothschild-Mancinelli, K., Sharma, N. D., Boyd, D. R., & Allen, C. C. R. (2016). Oxidative biotransformations of phenol substrates catalysed by toluene dioxygenase: a molecular docking study. Journal of Molecular Catalysis B: Enzymatic, 134, 396–406. https://doi.org/10.1016/j.molcatb.2016.10.013.

    Article  CAS  Google Scholar 

  25. Awasthi, M., Jaiswal, N., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2015). Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Journal of Biomolecular Structure and Dynamics, 33, 1835–1849. https://doi.org/10.1080/07391102.2014.975282.

    Article  CAS  PubMed  Google Scholar 

  26. Mo, D., Zeng, G., Yuan, X., Chen, M., Hu, L., Li, H., & Cheng, M. (2018). Molecular docking simulation on the interactions of laccase from Trametes versicolor with nonylphenol and octylphenol isomers. Bioprocess and Biosystems Engineering, 41(3), 331–343. https://doi.org/10.1007/s00449-017-1866-z.

    Article  CAS  PubMed  Google Scholar 

  27. Hongyan, L., Zexiong, Z., Shiwei, X., He, X., Yinian, Z., Haiyun, L., & Zhongsheng, Y. (2019). Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking. Chemosphere, 224, 743–750. https://doi.org/10.1016/j.chemosphere.2019.02.143.

    Article  CAS  PubMed  Google Scholar 

  28. Pieters, L., Van Dyck, S., Gao, M., Bai, R., Hamel, E., Vlietinck, A., & Lemière, G. (1999). Synthesis and biological evaluation of dihydrobenzofuran lignans and related compounds as potential antitumor agents that inhibit tubulin polymerization. Journal of Medicinal Chemistry, 42, 5475–5481. https://doi.org/10.1021/jm990251m.

    Article  CAS  PubMed  Google Scholar 

  29. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodrigues, R. P., Mantoani, S. P., de Almeida, J. R., Pinsetta, F. R., Semighini, E. P., da Silva, V. B., & Silva, C. H. T. P. (2012). Virtual screening strategies in drug design. Revista Virtual de Química, 4, 739–776. https://doi.org/10.5935/1984-6835.20120055.

    Article  CAS  Google Scholar 

  31. da Paixão, V. G., & da R Pita, S. S. (2019). In silico identification and evaluation of new Trypanosoma cruzi trypanothione reductase (TcTR) inhibitors obtained from natural products database of the Bahia semi-arid region (NatProDB). Computational Biology and Chemistry, 79, 36–47. https://doi.org/10.1016/j.compbiolchem.2019.01.009.

    Article  CAS  PubMed  Google Scholar 

  32. Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28(6), 1145–1152. https://doi.org/10.1002/jcc.20634.

    Article  CAS  PubMed  Google Scholar 

  33. Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 36, 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2.

    Article  CAS  Google Scholar 

  34. Montanari, C. (2011). Química Medicinal: métodos e fundamentos em planejamento de fármacos (1st ed.). São Paulo: EDUSP.

    Google Scholar 

  35. Salameh, D., Brandam, C., Medawar, W., Lteif, R., & Strehaiano, P. (2008). Highlight on the problems generated by p-coumaric acid analysis in wine fermentations. Food Chemistry, 107, 1661–1667. https://doi.org/10.1016/j.foodchem.2007.09.052.

    Article  CAS  Google Scholar 

  36. Foti, M. C., Daquino, C., & Geraci, C. (2004). Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. The Journal of Organic Chemistry, 69, 2309–2314. https://doi.org/10.1021/jo035758q.

    Article  CAS  PubMed  Google Scholar 

  37. Li, Y., & Hesse, M. (2003). The syntheses of cyclic spermine alkaloids: analogues of buchnerine and budmunchiamine C. Helvetica Chimica Acta, 86, 310–323. https://doi.org/10.1002/hlca.200390033.

    Article  CAS  Google Scholar 

  38. Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., & Liu, S. Q. (2016). Insights into protein–ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 1–34. https://doi.org/10.3390/ijms17020144.

    Article  CAS  Google Scholar 

  39. Dellafiora, L., Galaverna, G., Reverberi, M., & Dall’Asta, C. (2017). Degradation of aflatoxins by means of laccases from Trametes versicolor: an in silico insight. Toxins, 9(1), 17. https://doi.org/10.3390/toxins9010017.

    Article  CAS  PubMed Central  Google Scholar 

  40. Schrödinger, L. L. C. (2018). The PyMOL molecular graphics system. New York, USA.

Download references

Acknowledgments

JCSC thanks FAPESB for his scholarship.

Funding

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq), Brazilian Coordination for Improvement of Personnel Higher Education (CAPES), and Bahia Research Foundation (FAPESB, grant numbers JCB-0039/2013 and RED-008/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane de Oliveira Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conceição, J.C.S., Dias, H.J., Peralva, C.M.S. et al. Phenolic Compound Biotransformation by Trametes versicolor ATCC 200801 and Molecular Docking Studies. Appl Biochem Biotechnol 190, 1498–1511 (2020). https://doi.org/10.1007/s12010-019-03191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03191-y

Keywords

Navigation