Skip to main content
Log in

Exfoliating Agents for Skincare Soaps Obtained from the Crabwood Waste Bagasse, a Natural Abrasive from Amazonia

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Many personal cleansing products contain microplastics threatening coastal habitats, deep sea, as well as freshwater lakes. Non-pollutant biomasses with natural abrasiveness are potential substitutes for scrub-type cosmetics. This study sought to explore the potential of applying crabwood seed bagasse from Amazonia as an exfoliating agent of skincare soaps. The raw feedstock was characterized by chemical composition and particle size distribution. The morphologies of the crabwood particles and commercial exfoliating agents were compared. Thermal pretreatments were carried out in an attempt to make the particles inert. It was verified that crabwood particles contain above 50% of non-structural organic components in their mass. The high heterogeneity of particle size allowed selecting portions with dimensions comparable to commercial products, between 0.3 and 0.4 mm. The rough surface of crabwood particles was similar to those of other natural plant exfoliating agents suitable for intense skin exfoliation. Thermal pretreatments only partially volatilized non-structural components. The release of oil traces, which contains mainly palmitic and oleic acids, led the pH of the water to an unacceptable level (≤ 5.0), discouraging the direct application of crabwood bagasse in the skin. Nevertheless, when added to non-ionic surfactant based-soaps, pH remains adequate for skincare (≈ 6.0). The smaller particles (average diameter of 0.3 mm) submitted to the most drastic thermal pretreatment, 140 °C for 48 h of exposure, resulted in liquid skincare soaps with better properties. The crabwood particles’ potential to be added as an exfoliating agent in skincare soaps was confirmed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Vijayaraman, S., Mondal, P., Nandan, A., Siddiqui, N.A.: Presence of microplastic in water bodies and its impact on human health. In: Siddiqui, N.A., Tauseef, S.M., Abbasi, S.A., Khan, F.I. (eds.) Advances in Air Pollution Profiling and Control, pp. 57–65. Springer, Bangalore (2020)

    Chapter  Google Scholar 

  2. Seltenrich, N.: New link in the food chain? Marine plastic pollution and seafood safety. Environ. Health Perspect. (2015). https://doi.org/10.1289/ehp.123-A34

    Article  Google Scholar 

  3. Kühn, S., Franeker, J.A.: Quantitative overview of marine debris ingested by marine megafauna. Marine Pollut. Bull. (2020). https://doi.org/10.1016/j.marpolbul.2019.110858

    Article  Google Scholar 

  4. Boucher, J., Friot, D.: Primary Microplastics in the Oceans: A global Evaluation of Sources. IUCN, Gland (2017)

    Book  Google Scholar 

  5. Henderson, L., Green, C.: Making sense of microplastics? Public understandings of plastic pollution. Marine Pollut. Bull. (2020). https://doi.org/10.1016/j.marpolbul.2020.110908

    Article  Google Scholar 

  6. Lei, K., Qiao, F., Liu, Q., Wei, Z., Qi, H., Cui, S., Yue, X., Deng, Y., An, L.: Microplastics releasing from personal care and cosmetic products in China. Marine Pollut. Bull. (2017). https://doi.org/10.1016/j.marpolbul.2017.09.016

    Article  Google Scholar 

  7. Zhuo, H., Hu, Y., Tong, X., Zhong, L., Penga, X., Suna, R.: Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crops Prod. (2016). https://doi.org/10.1016/j.indcrop.2016.04.041

    Article  Google Scholar 

  8. Savary, M.G., Picard, C.: Cosmetics and personal care products. In: Olatunji, O. (ed.) Natural Polymers: Industry Techniques and Applications, pp. 219–261. Springer, Akoka (2015)

    Google Scholar 

  9. Maluf, D.F., Gonçalves, M.M., D’Angelo, R.W.O., Girassol, A.B., Tulio, A.P., Pupo, Y.M., Farago, P.V.: Cytoprotection of antioxidant biocompounds from grape pomace: Further exfoliant phytoactive ingredients for cosmetic products. Cosmetics (2018). https://doi.org/10.3390/cosmetics5030046

    Article  Google Scholar 

  10. Barata, L.E.S.: A economia verde—Amazônia. Cienc. Cult. (2012). https://doi.org/10.21800/S0009-67252012000300011

  11. Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos – ABIHPEC: Report of the sector 2019. https://abihpec.org.br/publicacao/panorama-do-setor-2019-2/ (2020). Accessed 25 Jun 2020

  12. Brazil – Ministério do Desenvolvimento Agrário, Ministério do Meio Ambiente e Ministério do Desenvolvimento Social e Combate à Fome: National plan of the promotion of socio-biodiversity products chains. http://www.seaf.mt.gov.br/documents/195721/287027/PLANO_NACIONAL_DA_SOCIOBIODIVERSIDADE_2009/04deedce-d8e7-4ae3-8999-2bd6655c16c8 (2009). Accessed 25 Jun 2020

  13. Alves, H.P., Pimenta, N.L., Hanada, R.E., Lima, A.A., Mustafa, E.V., Santos, E.M.R.: Networks of collaboration and management in of phytocosmetrics companies in the Amazon. Intl. J. Adv. Eng. Res. Sci. 6, 454 (2019)

    Article  Google Scholar 

  14. Zidko, A., Rodrigues, L.A., Mendonça, C.B.F., Absy, M.L., Ferreira, M.G., Sampaio, P.T.B., Esteves, V.: Morfologia polínica de Carapa (Meliaceae) espécies da Amazônia brasileira. Acta Amazonica (2016). https://doi.org/10.1590/1809-4392201505964

    Article  Google Scholar 

  15. Krist, S.: Vegetable Fats and Oils. Springer, Cham (2020)

    Book  Google Scholar 

  16. Ferraz, I., Camargo, J.L., Sampaio, P.: Roba-mahogany (Carapa guianensis Aubl. and Carapa procera D. C.): ecological, botanical and technological aspects of its seeds and seedlings. Acta Amazonica (2002)

  17. Nardi, M., Lira-Guedes, A.C., Cunha, H.F.A., Guedes, M.C., Mustin, K., Gomes, S.C.P.: Artisanal extraction and traditional knowledge associated with medicinal use of crabwood oil (Carapa guianensis Aublet.) in a Peri-Urban várzea environment in the Amazon estuary. Evid.-Based Complementary Alternative Med. (2016). https://doi.org/10.1155/2016/5828021

  18. Mendonça, A.P., Almeida, F.A.C., Oliveira, A.S., Rosa, J.C., Araújo, M.E.R., Sampaio, P.T.B.: Extraction of andiroba oil by press: yield and quality of seed oil submitted to different moisture and drying temperatures. Scientia Forestalis (2020). https://doi.org/10.18671/scifor.v48n125.09

    Article  Google Scholar 

  19. Novello, Z., Scapinello, J., Magro, J.D., Zin, G., Luccio, M.D., Tres, M.V., Oliveira, J.V.: Extraction, chemical characterization and antioxidant activity of andiroba seeds oil obtained from pressurized n-butane. Ind. Crops Prod. 76, 697–901 (2015). https://doi.org/10.1016/j.indcrop.2015.07.075

    Article  Google Scholar 

  20. Pereira, T.B., Silva, L.F.R., Amorim, R.C.N., Melo, M.R.S., Souza, R.C.Z., Eberlin, M.N., Lima, E.S., Vasconcellos, M.C., Pohlit, A.M.: In vitro and in vivo anti-malarial activity of limonoids isolated from the residual seed biomass from Carapa guianensis (andiroba) oil production. Malar. J. (2014). https://doi.org/10.1186/1475-2875-13-317

    Article  Google Scholar 

  21. Ferreira, A.M., da Sena, I., S., Magalhaes, K.F., Oliveira, S.L., Ferreira, I.M., Porto, A.L.M. : Amazon oils from andiroba (Carapa sp.) and babassu (Orbignya sp.) for preparation biodiesel by enzymatic catalysis. Curr. Biotechnol. (2019). https://doi.org/10.2174/2211550108666190125115515

    Article  Google Scholar 

  22. Miot, H.A., Batistella, R.F., Batista, K.A., Volpato, D.E.C., Augusto, L.S.T., Madeira, N.G., Haddad, V., Jr., Miot, L.D.B.: Comparative study of the topical effectiveness of the andiroba oil (Carapa guianensis) and DEET 50% as repellent for Aedes sp. Revista Inst. Médico Tropical São Paulo (2004). https://doi.org/10.1590/S0036-46652004000500004

    Article  Google Scholar 

  23. Senhorini, G.A., Zawadzki, S.F., Farago, P.V., Zanin, S.M.W., Marques, F.A.: Microparticles of poly(hydroxybutyrate-co-hydroxyvalerate) loaded with andiroba oil: preparation and characterization. Mater. Sci. Eng. (2012). https://doi.org/10.1016/j.msec.2012.02.027

    Article  Google Scholar 

  24. Oliveira, S., Junqueira, C., Tellis, M., Chagas, S., Behrens, M.D., Calabrese, S., Abreu-Silva, A.L., Almeida-souza, F.: Carapa guianensis Aublet (Andiroba) seed oil : chemical composition and antileishmanial activity of limonoid-rich fractions. Biomed Res. Intl. (2018). https://doi.org/10.1155/2018/5032816

    Article  Google Scholar 

  25. Silva, B.A., Silva, N.C., Runtzel, C.L., Aquino, C.M., Scussel, V.M.: Effect of Andiroba (Carapa guianensis Aubl.) oil for fungi control in maize (Zea mays L.) grains. J. Agric. Vet. Sci. (2019). https://doi.org/10.9790/2380-1209022632

    Article  Google Scholar 

  26. Packianathan, N., Kandasamy, R.: Skin care with herbal exfoliants. Funct. Plant Sci. Biotechnol. 5, 974–979 (2011)

    Google Scholar 

  27. Ganpati, R.K., Jadhav, C.M.: Formulation and evaluation of face scrub using mango seed as natural exfoliant. AEGAEUM J. 8, 51–58 (2020)

    Google Scholar 

  28. Delgado-Arias, S., Zapata-Valencia, S., Cano-Agudelo, Y., Osorio-Arias, J., Vega-Castro, O.: Evaluation of the antioxidant and physical properties of an exfoliating cream developed from coffee grounds. J. Food Process Eng. (2020). https://doi.org/10.1111/jfpe.13067

    Article  Google Scholar 

  29. Talpekar, P., Borikar, M.: Formulation, development and comparative study of facial scrub using synethetic and natural exfoliant. Res. J. Topical Cosmetic Sci. 10, 20 (2016). https://doi.org/10.5958/2321-5844.2016.00001.7

    Article  Google Scholar 

  30. Mendonça, A.P., Ferraz, I.D.K.: Crabwood oil: traditional extraction, use and social aspects in the state of Amazonas, Brasil. Acta Amazonica (2007). https://doi.org/10.1590/S0044-59672007000300006

    Article  Google Scholar 

  31. Stefano, M.V., Calazans, L.S.B., Sakuragui, C.M.: Meliaceae in lista de espécies da flora do brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB126255 (2015). Accessed 07 June 2020

  32. Instituto Nacional de Metereologia: BDMEP - Banco de dados meteorológicos para ensino e pesquisa. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep (2020). Accessed 07 June 2020

  33. Sampaio, J.A., da Silva, F.A.N.G.: Análise granulométrica por peneiramento. In: Sampaio, J.A., França, S.C.A., Braga, P.F.A. (eds.) Tratamento de minérios: práticas laboratoriais, pp. 55–72. CETEM/MCT, Rio de Janeiro (2007)

    Google Scholar 

  34. Baek, Y.S., Kwak, Y., Yang, S.: Visual appearance measurement of surfaces containing pearl flakes. J. Optical Soc. Am. 32, 334–942 (2015)

    Article  Google Scholar 

  35. Brazilian Association of Technical Standards—ABNT. NBR 6922: charcoal—physical tests. Rio de Janeiro,1981.

  36. Brazilian Association of Technical Standards—ABNT. NBR 14929: wood—determination of moisture of chips. Rio de Janeiro, 2003.

  37. Brazilian Association of Technical Standards—ABNT. NBR 14853: wood—determination of soluble matter in ethanol-toluene and in dichloromethane and in acetone. Rio de Janeiro (2010)

  38. Brazilian Association of Technical Standards—ABNT. NBR 7989: pulp and wood—determination of acid-insoluble lignin. Rio de Janeiro (2010)

  39. Brazilian Association of Technical Standards—ABNT. NBR 13999: paper, board, pulps and wood - determination of residue (ash) on ignition at 525°C. Rio de Janeiro (2017)

  40. Browning, B.L.: The Chemistry of Wood. Interscience, Warrenvile (1963)

    Google Scholar 

  41. Kennedy, F., Phillips, G.O., Williams, E.P.A.: Wood and Cellulosic: Industrial Utilization, Biotechnology, Structure and Properties. Halsted, New York (1987)

    Google Scholar 

  42. Brazilian Association of Technical Standards—ABNT. NBR 14577: cellulosic pulp and wood—determination of soluble material in water. Rio de Janeiro (2017)

  43. American Society for Testing and Materials. D1200–10R18: test method for viscosity by ford viscosity cup. West Conshohocken (2018)

  44. Camargos, J.A.A., Gonçalez, J.C.: Applied colorimetry as instrument in the elaboration of a timber color chart. Bras. Florest. 71, 30–41 (2001)

    Google Scholar 

  45. Gennadios, A., Weller, C.L., Hanna, M.A., Froning, G.W.: Mechanical and barrier properties of egg albumen films. J. Food Sci. (1996). https://doi.org/10.1111/j.1365-2621.1996.tb13164.x

    Article  Google Scholar 

  46. Paschoalick, T.M., Garcia, F.T., Sobral, P.J.A., Habitante, A.M.Q.B.: Characterization of some functional properties of edible films based on muscle proteins of Nile tilapia. Food Hydrocoll. (2003). https://doi.org/10.1016/S0268-005X(03)00031-6

    Article  Google Scholar 

  47. DeHaven, C.: Mechanisms of exfoliation. https://www.isclinical.com/media/WhitePapers/pdf/WhitePaper_MechanismsOfExfoliation_Jan2015_1_.pdf (2015). Accessed 25 July 2020

  48. Carll, C.G., Highley, T.L.: Decay of wood and wood-based products above ground in buildings. J. Test. Evaluation. 27, 150–158 (1999)

    Article  Google Scholar 

  49. Labbé, Rodrigo, Carey, P., Trincado, G., Thiers, O.: Natural drying of forest biomass: effect of stack height and cover in the province of Valdivia, Chile. Bosque (Valdivia) (2018). https://doi.org/10.4067/S0717-92002018000300449

  50. Protásio, T.P., Bufalino, L., Tonoli, G.H.D., Guimarães-Junior, M., Trugilho, P.F., Mendes, L. M.: Brazilian lignocellulosic wastes for bioenergy production: characterization and comparison with fossil fuels. BioResour. (2013). https://doi.org/10.15376/biores.8.1.1166-1185

  51. Schwarze, F.W.M.R.: Wood decay under the microscope. Fungal Biol. Rev. (2007). https://doi.org/10.1016/j.fbr.2007.09.001

    Article  Google Scholar 

  52. Kołodziejska-Degórska, I.: Patients’ webs of relations in the medical landscapes of Central Ukraine. Anthropol. Med. (2016). https://doi.org/10.1080/13648470.2016.1180583

    Article  Google Scholar 

  53. Bufalino, L., Protásio, T.P., Couto, A.M., Nassur, O.A.C., Sá, V.A., Trugilho, P.F., Mendes, L.M.: Caracterização química e energética para aproveitamento da madeira de costaneira e desbaste de cedro australiano. Pesqui. Flores. Brasileira (2012). https://doi.org/10.4336/2012.pfb.32.70.13

    Article  Google Scholar 

  54. Silvestre, W.P., Pauletti, G.F., Baldasso, C.: Fodder radish (Raphanus sativus L.) seed cake as a feedstock for pyrolysis. Ind. Crops Prod. (2020). https://doi.org/10.1016/j.indcrop.2020.112689

  55. Godoy, V., Martín-Lara, M.A., Calero, M., Blázquez, G.: Physical-chemical characterization of microplastics present in some exfoliating products from Spain. Marine Pollut. Bull. (2019). https://doi.org/10.1016/j.marpolbul.2018.12.026

    Article  Google Scholar 

  56. Sahlan, M., Fadhullah, H., Pratami, D., Lischer, K.: Physical and chemical characterization of dry mud propolis for natural scrub cosmetic. AIP Conference Proc. (2020). https://doi.org/10.1063/5.0002437

  57. Gouin, T., Avalos, J., Brunning, I., Brzuska, K., de Graaf, J., Kaumanns, J., Konong, T., Meyberg, M., Rettinger, K., Schlatter, H., Thomas, J., van Welie, R., Wolf, T.: Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment. SOFW-J. 141, 1–33 (2015)

    Google Scholar 

  58. Qi, B., Zhang, Q., Sui, X., Wang, Z., Li, Y., Jiang, L.: Differential scanning calorimetry study—assessing the influence of composition of vegetable oils on oxidation. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.07.148

    Article  Google Scholar 

  59. Kitsongsermthon, J., Duangweang, K., Kreepoke, J., Tansirikongko, A.: In vivo cleansing efficacy of biodegradable exfoliating beads assessed by skin bioengineering techniques. Skin Res. Technol. (2017). https://doi.org/10.1111/srt.12365

  60. Oliveira, D.N.P.S. de, Claro, P.I.C., Freitas, R.R. de, Martins, M.A., Souza, T.M., Silva, B.M. da S. e, Mendes, L.M., Bufalino, L.: Enhancement of the Amazonian açaí waste fibers through variations of alkali pretreatment parameters. Chem. Biodivers. (2019). https://doi.org/10.1002/cbdv.201900275

  61. Li, W., Zhai, Z.H., Pang, Q., Kong, L., Zhou, Z.R.: Influence of exfoliating facial cleanser on the bio-tribological properties of human skin. Wear (2013). https://doi.org/10.1016/j.wear.2012.11.073

    Article  Google Scholar 

  62. Tofanica, B.M., Cappelletto, E., Gavrilescu, D., Mueller, K.: Properties of rapeseed (Brassica napus) stalks fibers. J. Nat. Fibers (2011). https://doi.org/10.1080/15440478.2011.626189

    Article  Google Scholar 

  63. Laougé, Z.B., Merdun, H.: Kinetic analysis of Pearl Millet (Penissetum glaucum (L.) R. Br.) under pyrolysis and combustion to investigate its bioenergy potential. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117172

    Article  Google Scholar 

  64. Tahir, M.H., Zhao, Z., Ren, J., Rasool, T., Naqvi, S.R.: Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenergy (2019). https://doi.org/10.1016/j.biombioe.2019.01.009

    Article  Google Scholar 

  65. Mészáros, E., Jakab, E., Várhegyi, G.: TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. J. Analy. Appl. Pyrolysis (2007). https://doi.org/10.1016/j.jaap.2006.12.007

    Article  Google Scholar 

  66. Palmqvist E., Grage H., Meinander N.Q., Hahn-Hägerdal B.: Main and interaction effects of acetic acid, furfural and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. (1999). https://doi.org/10.1002/(sici)1097-0290(19990405)63:1<46::aid-bit5>3.0.co;2-j

  67. Naveed, A., Ahmad, M., Ali, G., Masood, M., Aleem, M.: Formulation and in vitro evaluation of a cosmetic emulsion from almond oil. Pak. J. Pharmac. Sci. 21, 430–437 (2008)

    Google Scholar 

  68. Hans, R.K., Agrawal, N., Verma, K., Misra, R.B., Ray, R.S., Farooq, M.: Assessment of the phototoxic potential of cosmetic products. Food Chem. Toxicol. (2008). https://doi.org/10.1016/j.fct.2008.01.005

    Article  Google Scholar 

  69. Bratovcic, A., Nazdrajic, S., Odobasic, A., Sestan, I.: The influence of type of surfactant on physicochemical properties of liquid soap. Intl. J. Mater. Chem. (2008). https://doi.org/10.5923/j.ijmc.20180802.02

    Article  Google Scholar 

  70. Sulistiawati, E., Astuti, E., Santosa, I.: The influence of strong reduced water and fresh coconut oil in viscosity of liquid hand soap. IOP Conference Series: Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/543/1/012022

  71. Brazilian Health Regulatory Agency—ANVISA: Guia de estabilidade de produtos cosméticos. http://portal.anvisa.gov.br/documents/106351/107910/Guia+de+Estabilidade+de+Produtos+Cosm%C3%A9ticos/49cdf34c-b697-4af3-8647-dcb600f753e2 (2004). Accessed 25 July 2020

  72. Choudhari, P.S., Gupta, M., Karadbhajne, V.Y.: Modification of kusum oil, isolation of key fatty acids and preparation of cosmetics. Intl. Res. J. Eng. Technol. 5, 239–242 (2018)

    Google Scholar 

  73. Zillich, O.V., Schweiggert-Weisz, U., Eisner, P., Kerscher, M.: Polyphenols as active ingredients for cosmetic products. Intl. J. Cosmet. Sci. (2015). https://doi.org/10.1111/ics.12218

    Article  Google Scholar 

  74. Tehrani-Bagha, A.R., Holmberg, K.: Solubilization of hydrophobic dyes in surfactant solutions. Mater. (2013). https://doi.org/10.3390/ma6020580

  75. Wasilewski, T., Seweryn, A., Bujak, T.: Supercritical carbon dioxide blackcurrant seed extract as an anti-irritant additive for hand dishwashing liquids. Green Chem. Lett. Rev. (2016). https://doi.org/10.1080/17518253.2016.1180432

    Article  Google Scholar 

  76. Wigley, T., Yip, A.C.K., Pang, S.: A detailed product analysis of bio-oil from fast pyrolysis of demineralised and torrefied biomass. J. Analy.Appl. Pyrolysis 23, 194–203 (2017)

    Article  Google Scholar 

  77. Vidal, N.P., Adigun, O.A., Pham, T.H., Mumtaz, A., Manful, C., Callahan, G., Stewart, P., Keough, D., Thomas, R.H.: The effects of cold saponification on the unsaponified fatty acid composition and sensory perception of commercial natural herbal soaps. Molecules (2018). https://doi.org/10.3390/molecules23092356

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the SEM analysis provided by the research institution Museu Paraense Emílio Goeldi, to the National Council for Scientific and Technological Development (CNPq—research project’s process number 431553/2016-5, public call CNPq Universal 2016) for the financial support, the Amapá Research Funding Foundation (FAPEAP—First Projects Program—Process Number 250.203.044/2017) for the financial support and to the Coordination for the Improvement of Higher Level Personnel (CAPES—project's process number 88881.199859/2018-01, public call PROCAD/Amazônia 2018) for scholarships.

Funding

The authors are to the National Council for Scientific and Technological Development (CNPq—research project’s process number 431553/2016–5, public call CNPq Universal 2016) for the financial support, the Amapá Research Funding Foundation (FAPEAP—First Projects Program—Process Number 250.203.044/2017) for the financial support and to the Coordination for the Improvement of Higher Level Personnel (CAPES) for scholarships.

Author information

Authors and Affiliations

Authors

Contributions

DWPP contributed with data curation, investigation, methodology, resources, and writing—original draft. GHDT contributed with writing—original draft and review & editing. T de PP contributed with funding acquisition and writing—original draft. TM de S contributed with funding acquisition and writing—review & editing. GCF contributed with funding acquisition and writing—original draft. I do VG contributed with writing—original draft, review & editing. IMF contributed with writing—original draft, review & editing. LB contributed with project administration, supervision, funding acquisition, and writing—original draft.

Corresponding author

Correspondence to Lina Bufalino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

All authors agreed with the content, gave explicit consent to submit, and obtained consent from the responsible authorities at their institutes.

Consent for Publication

This publication has been approved by all co-authors as well as by the responsible authorities.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pena, D.W.P., Tonoli, G.H.D., de Paula Protásio, T. et al. Exfoliating Agents for Skincare Soaps Obtained from the Crabwood Waste Bagasse, a Natural Abrasive from Amazonia. Waste Biomass Valor 12, 4441–4461 (2021). https://doi.org/10.1007/s12649-020-01336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01336-3

Keywords

Navigation