Skip to main content
Log in

Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli harboring a transmissible locus of stress tolerance (tLST) and the ability to form biofilms represent a serious risk in dairy production. Thus, we aimed to evaluate the microbiological quality of pasteurized milk from two dairy producers in Mato Grosso, Brazil, with a focus on determining the possible presence of E. coli with heat resistance (60 °C/6 min), biofilm-forming potential phenotypes and genotypes, and antimicrobial susceptibility. For this, fifty pasteurized milk samples from producers named A and B were obtained for 5 weeks to investigate the presence of Enterobacteriaceae members, coliforms, and E. coli. For heat resistance, E. coli isolates were exposed to a water bath at 60 °C for 0 and 6 min. In antibiogram analysis, eight antibiotics belonging to six antimicrobial classes were analyzed. The potential to form biofilms was quantified at 570 nm, and curli expression by Congo Red was analyzed. To determine the genotypic profile, we performed PCR for the tLST and rpoS genes, and pulsed-field gel electrophoresis (PFGE) was used to investigate the clonal profile of the isolates. Thus, producer A presented unsatisfactory microbiological conditions regarding Enterobacteriaceae and coliforms for weeks 4 and 5, while all samples analyzed for producer B were contaminated at above-the-limit levels established by national and international legislation. These unsatisfactory conditions enabled us to isolate 31 E. coli from both producers (7 isolates from producer A and 24 isolates from producer B). In this way, 6 E. coli isolates (5 from producer A and 1 from producer B) were highly heat resistant. However, although only 6 E. coli showed a highly heat-resistant profile, 97% (30/31) of all E. coli were tLST-positive. In contrast, all isolates were sensitive to all antimicrobials tested. In addition, moderate or weak biofilm potential was verified in 51.6% (16/31), and the expression of curli and presence of rpoS was not always related to this biofilm potential. Therefore, the results emphasize the spreading of heat-resistant E. coli with tLST in both producers and indicate the biofilm as a possible source of contamination during milk pasteurization. However, the possibility of E. coli producing biofilm and surviving pasteurization temperatures cannot be ruled out, and this should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Food and Agriculture Organization of the United Nations (FAO) (2021) Milk Facts. http://www.fao.org/3/I9966EN/i9966en.pdf. Accessed 22 July 2021.

  2. Instituto Brasileiro de Geografia e Estatística (IBGE) (2021) Indicadores IBGE - Estatística da Produção Pecuária out-dez 2020. IBGE, Brasil. Access: https://biblioteca.ibge.gov.br/visualizacao/periodicos/2380/epp_2020_4tri.pdf

  3. Food and Agriculture Organization of the United Nations (FAO) (2004) Code of hygienic practice for milk and milk products - CAC/RCP 57-2004. Food Agric Organ, United States. Access: https://www.fao.org/fileadmin/user_upload/livestockgov/documents/CXP_057e.pdf

  4. Brasil (2018) Instrução normativa N° 76, de 26 de novembro de 2018. Ministério da Agric Pecuária e Abast, Brasil. Access: https://wp.ufpel.edu.br/inspleite/files/2019/04/INSTRU%C3%87%C3%83O-NORMATIVA-N%C2%BA-76-DE-26-DE-NOVEMBRO-DE-2018-Di%C3%A1rio-Oficial-da-Uni%C3%A3o-Imprensa-Nacional.pdf

  5. Food and Drug Administration (FDA) (2017) Grade “A” Pasteurized Milk Ordinance. U S Dep Heal and Hum Serv, FDA. Access: https://www.fda.gov/media/140394/download

  6. Boor KJ, Wiedmann M, Murphy S, Alcaine S (2017) A 100-Year Review: microbiology and safety of milk handling. J Dairy Sci 100:9933–9951. https://doi.org/10.3168/jds.2017-12969

    Article  CAS  PubMed  Google Scholar 

  7. Wang G, Zhao T, Doyle MP (1997) Survival and growth of Escherichia coli 0157:H7 in unpasteurized and pasteurized milk. J Food Prot 60:610–613. https://doi.org/10.4315/0362-028X-60.6.610

    Article  PubMed  Google Scholar 

  8. Schrijver DK, Buvens G, Possié B et al (2008) Outbreak of verocytotoxin-producing E. coli O145 and O26 infections associated with the consumption of ice cream produced at a farm, Belgium, 2007. Eurosurveillance https://doi.org/10.2807/ese.13.07.08041-en

  9. Germinario C, Caprioli A, Giordano M et al (2016) Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26: H11 in southern Italy, summer 2013. Eurosurveillance 21:30343. https://doi.org/10.2807/1560-7917.ES.2016.21.38.30343

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peng S, Hummerjohann J, Stephan R, Hammer P (2013) Short communication: heat resistance of Escherichia coli strains in raw milk at different subpasteurization conditions. J Dairy Sci 96:3543–3546. https://doi.org/10.3168/jds.2012-6174

    Article  CAS  PubMed  Google Scholar 

  11. Marti R, Muniesa M, Schmid M, Ahrens CH, Naskova J, Hummerjohann J (2016) Short communication: heat-resistant Escherichia coli as potential persistent reservoir of extended-spectrum β-lactamases and Shiga toxin-encoding phages in dairy. J Dairy Sci 99:8622–8632. https://doi.org/10.3168/jds.2016-11076

    Article  CAS  PubMed  Google Scholar 

  12. Chart H (2000) Clinical significance of Verocytotoxin-producing Escherichia coli O157. World J Microbiol Biotechnol 16:719–724. https://doi.org/10.1023/A:1008928822352

    Article  Google Scholar 

  13. Denamur E, Clermont O, Bonacorsi S, Gordon D (2021) The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19:37–54. https://doi.org/10.1038/s41579-020-0416-x

    Article  CAS  PubMed  Google Scholar 

  14. Ntuli V, Njage PMK, Buys EM (2016) Characterization of Escherichia coli and other Enterobacteriaceae in producer-distributor bulk milk. J Dairy Sci 99:9534–9549. https://doi.org/10.3168/jds.2016-11403

    Article  CAS  PubMed  Google Scholar 

  15. Machado MAM, Müller B, Carvalho RCT, de Figueiredo EES (2018) Hygienic sanitary conditions of vacuum packed beef produced by slaughterhouses qualified for export in the Mato Grosso state, Brazil. Cienc Rural 48:7–10. https://doi.org/10.1590/0103-8478cr20170526

    Article  Google Scholar 

  16. Brasil (2001) Resolução de diretoria colegiada - RDC No 12, de 02 de janeiro de 2001. Ministério da Saúde - MS Agência Nacional de Vigilância Sanitária – ANVISA, Brasil. Access: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/resolucao-rdc-no-12-de-2-de-janeiro-de-2001.pdf/view

  17. Brasil (2019) Instrução normativa N° 60, de 23 de dezembro de 2019 - Imprensa Nacional. Agência Nac Vigilância Sanitária - ANVISA, Brasil. Access: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-60-de-23-de-dezembro-de-2019-235332356

  18. Union European (EU) (2005) Commission regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off J Eur Union. Access: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20140601&from=EN

  19. Stringer SC, George SM, Peck MW (2000) Thermal inactivation of Escherichia coli O157:H7. J Appl Microbiol Symp Suppl 88:79s–89s. https://doi.org/10.1111/j.1365-2672.2000.tb05335.x

    Article  Google Scholar 

  20. Dlusskaya EA, McMullen LM, Gänzle MG (2011) Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility. J Appl Microbiol 110:840–849. https://doi.org/10.1111/j.1365-2672.2011.04943.x

    Article  CAS  PubMed  Google Scholar 

  21. Mercer RG, Zheng J, Garcia-Hernandez R, Ruan L, Gänzle MG, McMullen LM (2015) Genetic determinants of heat resistance in Escherichia coli. Front Microbiol 6:1–13. https://doi.org/10.3389/fmicb.2015.00932

    Article  Google Scholar 

  22. Boll EJ, Marti R, Hasman H et al (2017) Turn up the heat-food and clinical Escherichia coli isolates feature two transferrable loci of heat resistance. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00579

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guragain M, Smith GE, King DA, Bosilevac JM (2020) Prevalence of extreme heat resistant gram negative bacteria carried by US cattle at harvest. J Food Prot 83:1438–1443. https://doi.org/10.4315/JFP-20-103

    Article  PubMed  Google Scholar 

  24. Kamal SM, Simpson DJ, Wang Z, Gänzle M, Römling U (2021) Horizontal transmission of stress resistance genes shape the ecology of beta- and gamma-proteobacteria. Front Microbiol. 12:696522. https://doi.org/10.3389/fmicb.2021.696522

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mercer R, Nguyen O, Ou Q, McMullen L, Gänzle MG (2017) Functional analysis of genes comprising the locus of heat resistance in Escherichia coli. Appl Environ Microbiol 83:1–13. https://doi.org/10.1128/AEM.01400-17

    Article  Google Scholar 

  26. Guragain M, Brichta-Harhay DM, Bono JL, Bosilevac JM (2021) Locus of heat resistance (LHR) in meat-borne Escherichia coli: screening and genetic characterization. Appl Environ Microbiol 87:1–13. https://doi.org/10.1128/AEM.02343-20

    Article  Google Scholar 

  27. Yang X, Tran F, Klassen MD (2020) Heat resistance in Escherichia coli and its implications on ground beef cooking recommendations in Canada. J Food Saf 1–9 https://doi.org/10.1111/jfs.12769

  28. Zhang P, Tran F, Stanford K, Yang X (2020) Are antimicrobial interventions associated with heat resistant Escherichia coli on meat? Appl Environ Microbiol. https://doi.org/10.1128/aem.00512-20

    Article  PubMed  PubMed Central  Google Scholar 

  29. Machado MAM, Castro VS, Carvalho RCT, Figueiredo EES, Conte-Junior CA (2022) Whole-genome sequencing analyses of heat-resistant Escherichia coli isolated from Brazilian beef. Microbiol Resour Announc 11:e0037122. https://doi.org/10.1128/mra.00371-22

    Article  CAS  PubMed  Google Scholar 

  30. Marti R, Schmid M, Kulli S et al (2017) Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resistant, heat-resistant strain FAM21845. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00628-17

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang P, Yang X (2022) Genetic characteristics of the transmissible locus of stress tolerance (tLST) and tLST harboring Escherichia coli as revealed by large-scale genomic analysis. Appl Environ Microbiol 88. https://doi.org/10.1128/aem.02185-21

  32. Xu ZS, Yang X, Gänzle MG (2021) Resistance of biofilm- and pellicle-embedded strains of Escherichia coli encoding the transmissible locus of stress tolerance (tLST) to oxidative sanitation chemicals. Int J Food Microbiol 359:109425. https://doi.org/10.1016/j.ijfoodmicro.2021.109425

    Article  CAS  PubMed  Google Scholar 

  33. Dourou D, Beauchamp CS, Yoon Y et al (2011) Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol 149:262–268. https://doi.org/10.1016/j.ijfoodmicro.2011.07.004

    Article  PubMed  Google Scholar 

  34. Kornacki JL, Johson JL (2015) Enterobacteriaceae, coliforms and Escherichia coli as quality and safety indicators, 101–117. In: Salfinger Y, Tortorello ML (eds) Compendium of Methods for the Microbiological Examination of Foods, 5th ed. American Public Health Association (APHA), Washington, D.C. https://doi.org/10.2105/MBEF.0222

  35. Figueiredo EES, Yang X, Zhang P, Reuter T, Stanford K (2019) Comparison of heating block and water bath methods to determine heat resistance in Shiga-toxin producing Escherichia coli with and without the locus of heat resistance. J Microbiol Methods 164:105679. https://doi.org/10.1016/j.mimet.2019.105679

    Article  CAS  Google Scholar 

  36. Castro VS, Rosario DKA, Mutz YS, Paletta ACC, Figueiredo EES, Conte-Junior CA (2019) Modelling inactivation of wild-type and clinical Escherichia coli O26 strains using UV-C and thermal treatment and subsequent persistence in simulated gastric fluid. J Appl Microbiol 127:1564–1575. https://doi.org/10.1111/jam.14397

    Article  CAS  PubMed  Google Scholar 

  37. Clinical and Laboratory Standards Institute (CLSI) (2021) M100 performance standards for antimicrobial susceptibility testing  8:27–39. Access: https://clsi.org/

  38. Bang HJ, Park SY, Kim SE, Md Furkanur Rahaman M, Ha S-D (2017) Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT 84:91–98. https://doi.org/10.1016/j.lwt.2017.05.037

    Article  CAS  Google Scholar 

  39. Fang Y, Visvalingam J, Zhang P, Yang X (2021) Biofilm formation by Non-O157 Shiga toxin-producing Escherichia coli in monocultures and co-cultures with meat processing surface bacteria. Food Microbiol 102:103902. https://doi.org/10.1016/j.fm.2021.103902

    Article  CAS  PubMed  Google Scholar 

  40. Stanford K, Tran F, Zhang P, Yang X (2021) Biofilm-forming capacity of Escherichia coli isolated from cattle and beef packing plants: relation to virulence attributes, stage of processing, antimicrobial interventions, and heat tolerance. Appl Environ Microbiol 87. https://doi.org/10.1128/AEM.01126-21

  41. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian J Infect Dis 15:305–311. https://doi.org/10.1016/S1413-8670(11)70197-0

    Article  Google Scholar 

  42. Bahri AA, Wan Abdullah WZ, Lani MN, Salleh W, Alias R (2020) Genotypic and phenotypic characteristics associated with biofilm formation in Escherichia coli and Salmonella spp. Isolated from ulam in Terengganu. Food Res 4:91–101. https://doi.org/10.1128/AEM.01660-17

    Article  Google Scholar 

  43. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67. https://doi.org/10.1089/fpd.2006.3.59

    Article  CAS  PubMed  Google Scholar 

  44. Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, Zarazaga M (2015) GelJ - a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16:1–8. https://doi.org/10.1186/s12859-015-0703-0

    Article  CAS  Google Scholar 

  45. Dong HJ, Lee S, Kim W, An JU, Kim J, Kim D, Cho S (2017) Prevalence, virulence potential, and pulsed-field gel electrophoresis profiling of Shiga toxin-producing Escherichia coli strains from cattle. Gut Pathog 9:1–16. https://doi.org/10.1186/s13099-017-0169-x

    Article  CAS  Google Scholar 

  46. Ma A, Chui L (2017) Identification of heat resistant Escherichia coli by qPCR for the locus of heat resistance. J Microbiol Methods 133:87–89. https://doi.org/10.1016/j.mimet.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  47. Uhlich GA, Chen C, Cottrell BJ, Hofmann CS, Dudley EG, Strobaugh TP (2013) Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157 : H7. Microbiology 1586–1596. https://doi.org/10.1099/mic.0.066118-0

  48. Mika F, Hengge R (2014) Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 11(5):494–507. https://doi.org/10.4161/rna.28867

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ribeiro Júnior JC, Silva FF, Lima JBA et al (2019) Short communication: molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. J Dairy Sci 102:10850–10854. https://doi.org/10.3168/jds.2019-16732

    Article  CAS  PubMed  Google Scholar 

  50. Berhe G, Wasihun AG, Kassaye E, Gebreselasie K (2020) Milk-borne bacterial health hazards in milk produced for commercial purpose in Tigray, northern Ethiopia. BMC Public Health 20:894. https://doi.org/10.1186/s12889-020-09016-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rosario AILS, Castro VS, Santos LF et al (2021) Shiga toxin–producing Escherichia coli isolated from pasteurized dairy products from Bahia, Brazil. J Dairy Sci 104:6535–6547. https://doi.org/10.3168/jds.2020-19511

    Article  CAS  PubMed  Google Scholar 

  52. Tortorello ML (2003) Indicator organisms for safety and quality-uses and methods for detection: minireview. J AOAC Int 86:1208–1217. https://doi.org/10.1093/jaoac/86.6.1208

    Article  CAS  PubMed  Google Scholar 

  53. Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho GS, Kabisch J, Böhnlein C, Franz CMAP (2020) Microbial quality and safety of milk and milk products in the 21st century. Compr Rev Food Sci Food Saf 19:2013–2049. https://doi.org/10.1111/1541-4337.12568

    Article  CAS  PubMed  Google Scholar 

  54. Food and Agriculture Organization (FAO) (2010) Status and prospects for smallholder milk production a global perspective, 160. In: by T. Hemme and J Otte Rome. Access: https://www.fao.org/3/i1522e/i1522e00.pdf

  55. Ledo J, Hettinga KA, Luning PA (2020) A customized assessment tool to differentiate safety and hygiene control practices in emerging dairy chains. Food Control 111:107072. https://doi.org/10.1016/j.foodcont.2019.107072

    Article  CAS  Google Scholar 

  56. Costa M, Brusa V, Padola NL et al (2021) Analysis of scenarios to reduce the probability of acquiring hemolytic uremic syndrome associated with beef consumption. Food Sci Technol Int 1–9. https://doi.org/10.1177/10820132211046124

  57. Teixeira LAC, Carvalho FT, Vallim DC et al (2019) Listeria monocytogenes in Export-approved Beef from Mato Grosso, Brazil: prevalence, molecular characterization and resistance to antibiotics and disinfectants. Microorg 8:18. https://doi.org/10.3390/microorganisms8010018

    Article  CAS  Google Scholar 

  58. Lindsay D, Robertson R, Fraser R, Engstrom S, Jordan K (2021) Heat induced inactivation of microorganisms in milk and dairy products. Int Dairy J 121:105096. https://doi.org/10.1016/j.idairyj.2021.105096

    Article  Google Scholar 

  59. Wang Z, Hu H, Zhu T, Zheng J, Gänzle MG, Simpson DJ (2021) Ecology and function of the transmissible locus of stress tolerance in Escherichia coli and plant-associated Enterobacteriaceae. mSystems 6:378–399. https://doi.org/10.1128/mSystems.00378-21

    Article  Google Scholar 

  60. Chmielewski RAN, Frank JF (2003) Biofilm Formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32. https://doi.org/10.1111/j.1541-4337.2003.tb00012.x

    Article  CAS  PubMed  Google Scholar 

  61. Wang R, Kalchayanand N, King DA, Luedtke BE, Bosilevac JM, Arthur TM (2014) Biofilm formation and sanitizer resistance of Escherichia coli O157:H7 strains isolated from “‘High Event Period’” meat contamination 3. J Food Prot 77:1982–1987. https://doi.org/10.4315/0362-028X.JFP-14-253

    Article  CAS  PubMed  Google Scholar 

  62. Dass SC, Bosilevac JM, Weinroth M, Elowsky CG, Zhou Y, Anandappa A (2020) Wang R (2020) Impact of mixed biofilm formation with environmental microorganisms on E. coli O157:H7 survival against sanitization. npj Sci Food 41(4):1–9. https://doi.org/10.1038/s41538-020-00076-x

    Article  Google Scholar 

  63. Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 0:898. https://doi.org/10.3389/fmicb.2018.00898

  64. Schiebel J, Böhm A, Nitschke J et al (2017) Genotypic and phenotypic characteristics associated with biofilm formation by human clinical Escherichia coli isolates of different pathotypes. Appl Environ Microbiol 83:24. https://doi.org/10.1128/AEM.01660-17

    Article  Google Scholar 

  65. Ma A, Neumann N, Chui L (2021) Phenotypic and genetic determination of biofilm formation in heat resistant Escherichia coli possessing the locus of heat resistance. Microorganisms 9:1–13. https://doi.org/10.3390/microor-ganisms9020403

    Article  CAS  Google Scholar 

  66. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121:309–319. https://doi.org/10.1111/jam.13078

    Article  CAS  PubMed  Google Scholar 

  67. Castro VS, Polo RO, Figueiredo EES et al (2021) Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: insights from whole genome sequence analyses. PLoS ONE 16(9):e0257168. https://doi.org/10.1371/journal.pone.0257168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corona-Izquierdo FP, Membrillo-Hernández J (2002) A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211:105–110. https://doi.org/10.1111/j.1574-6968.2002.tb11210.x

  69. Bleibtreu A, Clermont O, Darlu P, Glodt J, Branger C, Picard B, Denamur E (2014) The rpoS gene is predominantly inactivated during laboratory storage and undergoes source-sink evolution in Escherichia coli species. J Bacteriol 196:4276–4284. https://doi.org/10.1128/JB.01972-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grant numbers 444465/2020–0, 313119/2020–1, 310181/2021–6, and 200472/2022–4). Authors Maxsueli A. M. Machado, Carlos A. Conte-Junior, and Eduardo E. S. Figueiredo have received research support from CNPq.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Maxsueli Aparecida Moura Machado, Eduardo Eustáquio de Souza Figueiredo, and Carlos Adam Conte-Junior; methodology: Maxsueli Aparecida Moura Machado, Vinicius Silva Castro, Adelino Cunha-Neto, Deyse Christina Vallim, Rodrigo de Castro Lisbôa Pereira, Jaqueline Oliveira dos Reis, and Patricia Veiga de Almeida; formal analysis and investigation: Maxsueli Aparecida Moura Machado, Vinicius Silva Castro, Diego Galvan, and Adelino da Cunha-Neto; writing—original draft preparation: Maxsueli Aparecida Moura Machado; writing—review and editing: Maxsueli Aparecida Moura Machado, Vinicius Silva Castro, Adelino Cunha-Neto, Deyse Christina Vallim, Rodrigo de Castro Lisbôa Pereira, Jaqueline Oliveira dos Reis, Patricia Veiga de Almeida, Diego Galvan, Eduardo Eustáquio de Souza Figueiredo, and Carlos Adam Conte-Junior; funding acquisition: Maxsueli Aparecida Moura Machado and Eduardo Eustáquio de Souza Figueiredo; resources: Patricia Veiga de Almeida, Deyse Christina Vallim and Carlos Adam Conte-Junior; supervision: Eduardo Eustáquio de Souza Figueiredo, and Carlos Adam Conte-Junior.

Corresponding author

Correspondence to Eduardo Eustáquio de Souza Figueiredo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mariza Landgraf

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, M.A.M., Castro, V.S., da Cunha-Neto, A. et al. Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil. Braz J Microbiol 54, 1035–1046 (2023). https://doi.org/10.1007/s42770-023-00920-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00920-8

Keywords

Navigation