Skip to main content

Advertisement

Log in

Gene expression and cell culture assays reveal cheese isolate Lactococcus lactis MC5 may influence the virulence of Staphylococcus aureus

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus (SA) can thrive in a wide variety of hosts and environments, causing clinical infections and foodborne intoxications. In Brazil, SA is commonly isolated from traditional soft cheeses, especially those prepared from unpasteurized milk. In this research, the isolate S. aureus SABRC1 was evaluated for virulence traits under different conditions, including co-inoculation with Lactococcus lactis MC5 (isolated from “Fresh Minas Cheese”), which produces antibacterial peptides. Results from experiments with Caco-2 culture indicated S. aureus SABRC1 was able to adhere (42.83 ± 1.79%) and to invade (48.57 ± 0.41%) the intestinal cells. On the other hand, L. lactis MC5 presented anti-staphylococcal activity as indicated by agar assays, and it was also able to antagonize intestinal cell invasion by S. aureus. Moreover, Reverse Transcriptase-PCR experiments showed virulence genes of S. aureus SABRC1 (hla, icaA and sea) were differentially expressed under diverse culture conditions, which included Brain Heart Infusion modified or not by the addition of glucose, sodium chloride, milk or cheese. This suggests the virulence of S. aureus SABRC1 is influenced by compounds commonly found in daily diets, and not only by its genetic repertoire, adding a novel level of complexity for controlling infection by this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Cheung GYC, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12(1):547–569. https://doi.org/10.1080/21505594.2021.1878688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva-Santana G, Cabral-Oliveira GG, Oliveira DR, Nogueira BA, Pereira-Ribeiro PMA, Mattos-Guaraldi AL (2021) Staphylococcus aureus biofilms: an opportunistic pathogen with multidrug resistance. Rev Med Microbiol 32(1):12–21. https://doi.org/10.1097/MRM.0000000000000223

    Article  Google Scholar 

  3. Pérez-Montarelo D, Viedma E, Murcia M, Muñoz-Gallego I, Larrosa N, Brañas P, Fernández-Hidalgo N, Gavaldà J, Almirante B, Chaves F (2017) Pathogenic characteristics of Staphylococcus aureus endovascular infection isolates from different clonal complexes. Front Microbiol 19(8):917. https://doi.org/10.3389/fmicb.2017.00917

    Article  Google Scholar 

  4. Pivard M, Moreau K, Vandenesch F (2021) Staphylococcus aureus arsenal to conquer the lower respiratory tract. mSphere 6(3):e00059-21. https://doi.org/10.1128/mSphere.00059-21

    Article  PubMed  PubMed Central  Google Scholar 

  5. King J, Kulhankova K, Christopher S, Bao V, Salgado-Pabón W (2016) Phenotypes and virulence among Staphylococcus aureus USA100, USA200, USA300, USA400, and USA600 clonal lineages. Cell Host Microbe 1(3):e00071-16. https://doi.org/10.1128/mSphere.00071-16

    Article  CAS  Google Scholar 

  6. Dittman KK, Chaul LT, Lee S, Oxaran V, Corassin CH, Oliveira CAF, De Martinis ECP, Alves VF, Gram L (2017) Staphylococcus aureus in some Brazilian dairy industries: changes of contamination and diversity. Front Microbiol 24(8):2049. https://doi.org/10.3389/fmicb.2017.020497

    Article  Google Scholar 

  7. Alba P, Feltrin F, Cordaro G, Porrero MC, Kraushaar B, Argudín MA, Nykäsenoja S, Monaco M, Stegger M, Aarestrup FM, Butaye P, Franco A, Battisti A (2015) Livestock-associated methicillin resistant and methicillin susceptible Staphylococcus aureus Sequence Type (CC)1 in European farmed animals: high genetic relatedness of isolates from Italian cattle herds and humans. PLoS One 10(8):e0137143. https://doi.org/10.1371/journal.pone.0137143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ilczyszyn WM, Sabat AJ, Akkerboom V, Szkarlat A, Klepacka J, Sowa-Sierant I, Wasik B, Kosecka-Strojek M, Buda A, Miedzobrodzki J, Friedrich AW (2016) Clonal structure and characterization of Staphylococcus aureus strains from invasive infections in paediatric patients from south Poland: association between age, spa types, clonal complexes, and genetic markers. PLoS One 11(3):e0151937. https://doi.org/10.1371/journal.pone.0151937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acton DS, Plat-Sinnige MJ, van Wamel W, de Groot N, van Belkum A (2009) Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis 28(2):115–127. https://doi.org/10.1007/s10096-008-0602-7

    Article  CAS  PubMed  Google Scholar 

  10. Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Saslowsky D, Lee JC (2015) Staphylococcus aureus colonization of the mouse gastrointestinal tract is modulated by wall teichoic acid, capsule, and surface proteins. PLoS Pathog 11(7):e1005061. https://doi.org/10.1371/journal.ppat.1005061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jayashree S, Karthikeyan R, Nithyalakshmi S, Ranjani J, Gunasekaran P, Rajendhran J (2018) Anti-adhesion property of the potential probiotic strain Lactobacillus fermentum 8711 against methicillin-resistant Staphylococcus aureus (MRSA). Front Microbiol 8(9):411. https://doi.org/10.3389/fmicb.2018.00411

    Article  Google Scholar 

  12. Bouchard DS, Rault L, Berkova N, Le Loir Y, Even S (2013) Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 79(3):877–885. https://doi.org/10.1128/AEM.03323-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim S, Lee J, Lee S, Ha J, Lee J, Choi Y, Oh H, Yoon Y, Kyoung-Hee C (2019) Invasion of intestinal cells by Staphylococcus aureus is mediated by pyruvate formate lyase protein (PFLB). J Pure Appl Microbiol 13(2):647–652. https://doi.org/10.22207/JPAM.13.2.01

    Article  Google Scholar 

  14. Hill C, Guarner F, Reid G, Gibson G, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  15. Nowak A, Motyl I (2017) In vitro anti-adherence effect of probiotic Lactobacillus strains on human enteropathogens. Biotech Food Sci. 81(2): 103–112. http://212.51.210.149/handle/11652/1620

  16. Pato U, Riftyan E, Ayu DF, Jonnaidi NN, Wahyuni MS, Feruni JA, Abdel-Wahhab, (2022) Antibacterial efficacy of lactic acid bacteria and bacteriocin isolated from Dadih’s against Staphylococcus aureus. Food Sci Technol 42:e27121. https://doi.org/10.1590/fst.27121

    Article  Google Scholar 

  17. Newstead LL, Varjonen K, Nuttall T, Paterson GK (2020) Staphylococcal-produced bacteriocins and antimicrobial peptides: their potential as alternative treatments for Staphylococcus aureus infections. Antibiotics (Basel) 9(2):40. https://doi.org/10.3390/antibiotics9020040

    Article  CAS  PubMed  Google Scholar 

  18. Yaacob SN, Wahab RA, Misson M, Sabullah MK, Huyop F, Zin NM (2022) Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant Staphylococcus aureus. Future Microbiol 17:683–699. https://doi.org/10.2217/fmb-2021-0256

    Article  CAS  PubMed  Google Scholar 

  19. Alves VF, Nino-Arias FC, Pitondo-Silva A, Frazilio DA, Gonçalves LO, Toubas LC, Torres IMS, Oxaran V, Dittmann KK, De Martinis ECP (2018) Molecular characterisation of Staphylococcus aureus from some artisanal Brazilian dairies. Int Dairy J 85(10):247–253. https://doi.org/10.1016/j.idairyj.2018.06.008

    Article  CAS  Google Scholar 

  20. Lewus CB, Montville TJ (1991) Detection of bacteriocins produced by lactic acid bacteria. J Microbiol Meth 13(2):145–150. https://doi.org/10.1016/0167-7012(91)90014-H

    Article  CAS  Google Scholar 

  21. De Martinis ECP, Públio MRP, Santarosa PR, Freitas FZ (2001) Antilisterial activity of lactic acid bacteria isolated from vacuum-packaged Brazilian meat and meat products. Braz J Microbiol 32:32–37. https://doi.org/10.1590/S1517-83822001000100008

    Article  Google Scholar 

  22. Devereux R, Wilkinson SS (2004) Amplification of ribosomal RNA sequences. In: Akkermans ADL (ed) Molecular microbial ecology manual. Kluwer Academic, Dordrecht, pp 509–522

    Chapter  Google Scholar 

  23. Moroni O, Kheadr E, Boutin Y, Lacroix C, Fliss I (2006) Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl Environ Microbiol 72:11. https://doi.org/10.1128/AEM.00928-06

    Article  CAS  Google Scholar 

  24. Merghni A, Nejma MB, Helali I, Hentati H, Bongiovanni A, Lafont F, Aouni M, Mastouri M (2015) Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains. Microb Pathog 86:1–9. https://doi.org/10.1016/j.micpath.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  25. Mayr-Harting A, Hedges AJ, Berkeley RCW (1972) Methods for studying bacteriocins. Methods in microbiology. Academic Press, London, pp 315–342

    Google Scholar 

  26. Ping J, Abercrombie N, Jeffrey K, Leung P (2012) An improved medium for growing Staphylococcus aureus biofilm. J Microbiol Methods 90(2):115–118. https://doi.org/10.1016/j.mimet.2012.04.009

    Article  CAS  Google Scholar 

  27. Snel GGM, Malvisi M, Pilla R, Piccinini R (2014) Evaluation of biofilm formation using milk in a flow cell model and microarray characterization of Staphylococcus aureus strains from bovine mastites. Vet Microbiol 174(3–4):489–495. https://doi.org/10.1016/j.vetmic.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda T, Yamaguchi K, Makino S (2005) Quantitative analysis of Staphylococcus aureus in skimmed milk powder by real time PCR. J Vet Med Sci 67(10):1037–1041. https://doi.org/10.1292/jvms.67.1037

    Article  CAS  PubMed  Google Scholar 

  29. Furtado MM, Neto JPML (1994) Manual técnico para a produção industrial de queijos. Tecnologia de queijos, Dipermar, São Paulo, pp 1–118

    Google Scholar 

  30. Silva FT (2005) Queijo Minas Frescal. In: Coleção Agroindústria Familiar—Empresa Brasileira de Pesquisa Agropecuária—Informação Tecnológica. Embrapa, Brasília - DF, pp. 13–30. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/11884/2/00076200.pdf. Acessed 12 July 2022

  31. Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H (2011) Expression of virulence factors in Staphylococcus aureus grown in serum. Appl Environ Microbiol 77(22):8097–8105. https://doi.org/10.1128/AEM.05316-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar G, Negi Y, Gaur A, Khanna D (2009) Detection of virulence genes in Staphylococcus aureus isolated from paper currency. Int J Infect Dis 13(6):e450–e455. https://doi.org/10.1016/j.ijid.2009.02.020

    Article  CAS  PubMed  Google Scholar 

  33. Eleaume H, Jabbouri S (2004) Comparison of two standarsation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Meth 59(3):363–370. https://doi.org/10.1016/j.mimet.2004.07.015

    Article  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  35. Fukuta Y, Cunningham CA, Harris PL, Wagener MM, Muder RR (2012) Identifying the risk factors for hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) infection among patients colonized with MRSA on admission. Infect Control Hosp Epidemiol 33(12):1219–1225. https://doi.org/10.1086/668420

    Article  PubMed  Google Scholar 

  36. Rolain J (2013) Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol 24(4):173. https://doi.org/10.3389/fmicb.2013.00173

    Article  Google Scholar 

  37. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 11(10):57. https://doi.org/10.3389/fmicb.2019.00057

    Article  Google Scholar 

  38. Schaffner F, Ray A, Dontenwill M (2013) Integrin α5β1, the fibronectinreceptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel) 5(1):27–47. https://doi.org/10.3390/cancers5010027

    Article  CAS  PubMed  Google Scholar 

  39. Speziale P, Pietrocola G (2020) The multivalent role of fibronectin-binding proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in host infections. Front Microbiol 26(11):2054. https://doi.org/10.3389/fmicb.2020.02054

    Article  Google Scholar 

  40. Edwards AM, Potts JR, Josefsson E, Massey RC (2010) Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. Plos Pathog 6(6):e-1000964. https://doi.org/10.1371/journal.ppat.1000964

    Article  CAS  Google Scholar 

  41. André MCDPB, Campos L, Borges A, Kipnis F, Pimenta A, Serafini B (2008) Comparison of Staphylococcus aureus isolates from food handlers, raw bovine milk and Minas Frescal cheese by antibiogram and pulsed-field gel electrophoresis following SmaI digestion. Food Control 19(2):200–207. https://doi.org/10.1016/j.foodcont.2007.03.010

    Article  CAS  Google Scholar 

  42. Bar-Gal G, Kahila­Blum SE, Hadas L, Ehricht R, Monecke S, Leitner G (2015) Host-specificity of Staphylococcus aureus causing intramammary infections in dairy animals assessed by genotyping and virulence genes. Vet Microbiol. 176(1–2):143–54. https://doi.org/10.1016/j.vetmic.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  43. Smith J, Bencivengo M, Buchanan R, Kunsch C (1986) Enterotoxin A production in Staphylococcus aureus: inhibition by glucose. Arch Microbiol 144(2):131–136. https://doi.org/10.1007/BF00414722

    Article  CAS  PubMed  Google Scholar 

  44. Méndez MB, Goñi A, Ramirez W, Grau R (2012) Sugar inhibits the production of the toxins that trigger clostridial gas gangrene. Microb Pathog 52(1):85–91. https://doi.org/10.1016/j.micpath.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  45. Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 26(5):241. https://doi.org/10.3389/fmicb.2014.00241

    Article  Google Scholar 

  46. Ferreira GB, Oliveira ACS, Marson JM, Terra APS (2010) Research of Staphylococcus aureus in “Minas Frescal” Cheese marketed in the region of Triângulo Mineiro. Rev Baiana Saúde Pública 34(3):575–589

    Article  Google Scholar 

  47. Argudín M, Mendoza M, Rodicio M (2010) Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2:1751–1773. https://doi.org/10.3390/toxins2071751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MGP especially acknowledges CAPES for a post-doctoral fellowship (PNPD). ECPDM is a research fellow of the National Council for Scientific and Technological Development (CNPq)—Brazil and FCNA received a Master fellowship from CNPq.

Funding

The authors are grateful to São Paulo Research Foundation—Brazil for a research grant (FAPESP 2012/50507–1), to the Multiuser Laboratory of Confocal Microscopy—LMMC (FAPESP 2004/08868–0) and also to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES; finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of the study. Material preparation, data collection and analysis were performed by FCNA and MGP. VFA collaborated by discussing experiments and drafting the manuscript. ECPDM coordinated a financial grant for this project, designed and supervised the microbiological tests. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Virgínia Farias Alves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor:  Mariza Landgraf

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niño-Arias, F.C., Alves, V.F., Pereira, M.G. et al. Gene expression and cell culture assays reveal cheese isolate Lactococcus lactis MC5 may influence the virulence of Staphylococcus aureus. Braz J Microbiol 54, 2027–2034 (2023). https://doi.org/10.1007/s42770-023-01004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01004-3

Keywords

Navigation