Skip to main content

Advertisement

Log in

Photoinactivation of microorganisms using bacteriochlorins as photosensitizers

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In recent years, some microorganisms have shown resistance to conventional treatments. Considering this increase in resistant pathogens, treatment alternatives are needed to promote greater treatment efficiency. In this sense, antimicrobial photodynamic therapy (aPDT) has been an alternative treatment. This technique uses a photosensitizer that is activated by light with a specific wavelength producing reactive species, leading to the death of pathogenic microorganisms. In this study, bacteriochlorophyll derivatives such as bacteriochlorin metoxi (Bchl-M) and bacteriochlorin trizma (Bchl-T) obtained from purple bacterium (Rhodopseudomonas faecalis), were evaluated as photosensitizers in the aPDT. Photodynamic inactivation (PDI) of the microorganisms Staphylococcus aureus, Micrococcus luteus, Candida albicans and Pseudomonas aeruginosa was investigated with both bacteriochlorins (Bchl-M and Bchl-T) at different concentrations (1, 15 and 30 µM for S. aureus; 1, 15, 30, 45, 60 and 75 µM for M. luteus; 30, 60, 90, 105, 120 and 150 µM for C. albicans; and 200 µM for P. aeruginosa) and different doses of light (20 and 30 J/cm2 for S. aureus and M. luteus; 30 and 45 J/cm2 for C. albicans; and 45 J/cm2 for P. aeruginosa) to inactivate them. Both photosensitizers showed good activation against S. aureus and for M. luteus, we observed the inactivation of these microorganisms at approximately 3 log, showing to be a good photosensitizers for these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450. https://doi.org/10.1039/B311900A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Xu Y, Guo X et al (2022) Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation. Adv Drug Deliv Rev 183:114168. https://doi.org/10.1016/J.ADDR.2022.114168

    Article  CAS  PubMed  Google Scholar 

  3. Hamblin AMR, Jori G (2011) Photodynamic inactivation of microbial pathogens medical and environmental applications: light strikes back microorganisms in the new millennium. Photochem Photobiol 87(6):1479–1479. https://doi.org/10.1111/j.1751-1097.2011.01010.x

    Article  Google Scholar 

  4. Garcia de Carvalho G, Sanchez-Puetate JC, Donatoni MC et al (2020) Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis. Photodiagn Photodyn Ther 31. https://doi.org/10.1016/j.pdpdt.2020.101916

  5. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73. https://doi.org/10.1016/j.mib.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bush K, Courvalin P, Dantas G et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9(12):894–896. https://doi.org/10.1038/nrmicro2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vilela SFG, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AOC (2012) Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Arch Oral Biol 57(6):704–710. https://doi.org/10.1016/J.ARCHORALBIO.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  8. Zheng M, Zhou X, Pang J et al (2023) New methylene blue-mediated photodynamic inactivation of multidrug-resistant Fonsecaea nubica infected chromoblastomycosis in vitro. Braz J Microbiol. Published online June 1, 2023. https://doi.org/10.1007/s42770-023-00974-8

  9. Habermeyer B, Guilard R (2018) Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT, PIT and PDI. Photochem Photobiol Sci 17(11):1675–1690. https://doi.org/10.1039/c8pp00222c

    Article  CAS  PubMed  Google Scholar 

  10. Shi C, Liu J, Li W, Zhao Y, Meng L, Xiang M (2019) Expression of fluconazole resistance-associated genes in biofilm from 23 clinical isolates of Candida albicans. Braz J Microbiol 50(1):157–163. https://doi.org/10.1007/s42770-018-0009-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 14(4):491–509. https://doi.org/10.1111/1541-4337.12144

    Article  Google Scholar 

  12. Rather MA, Gupta K, Mandal M (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Issa MCA, Manela-Azulay M (2010) Photodynamic therapy: a review of the literature and image documentation. An Bras Dermatol 85:501–512

    Article  PubMed  Google Scholar 

  14. Alves E, Melo T, Simões C et al (2013) Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics. Rapid Commun Mass Spectrom 27(14):1607–1618. https://doi.org/10.1002/rcm.6614

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Usacheva MN, Teichert MC, Biel MA (2003) The interaction of lipopolysaccharides with phenothiazine dyes. Lasers Surg Med 33(5):311–319. https://doi.org/10.1002/lsm.10226

    Article  PubMed  Google Scholar 

  16. Gracanin M, Hawkins CL, Pattison DI, Davies MJ (2009) Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radic Biol Med 47(1):92–102. https://doi.org/10.1016/j.freeradbiomed.2009.04.015

    Article  CAS  PubMed  Google Scholar 

  17. Sharma SK, Krayer M, Sperandio FF et al (2013) Synthesis and evaluation of cationic bacteriochlorin amphiphiles with effective in vitro photodynamic activity against cancer cells at low nanomolar concentration. J Porphyr Phthalocyanines 17(1–2):73–85. https://doi.org/10.1142/S108842461250126X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwiatkowski S, Knap B, Przystupski D et al (2018) Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107. https://doi.org/10.1016/J.BIOPHA.2018.07.049

    Article  PubMed  Google Scholar 

  19. de Oliveira Silva EP, Mittmann J, Ferreira VTP, Cardoso MAG, Beltrame M (2015) Photodynamic effects of zinc phthalocyanines on intracellular amastigotes of Leishmania amazonensis and Leishmania braziliensis. Lasers Med Sci. 30(1):347–354. https://doi.org/10.1007/S10103-014-1665-6/FIGURES/5

    Article  Google Scholar 

  20. Nagata JY, Hioka N, Kimura E et al (2012) Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagn Photodyn Ther 9(2):122–131. https://doi.org/10.1016/J.PDPDT.2011.11.006

    Article  CAS  Google Scholar 

  21. Wainwright M, Phoenix DA, Laycock SL, Wareing DRA, Wright PA (1998) Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol Lett 160(2):177–181. https://doi.org/10.1111/J.1574-6968.1998.TB12908.X

    Article  CAS  PubMed  Google Scholar 

  22. Dhami S, De Mello AJ, Rumbles G, Bishop M, Phillips D, Beeby A (1995) Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect? Photochem Photobiol. 61(4):341–346

    Article  CAS  Google Scholar 

  23. Meerovich GA, Tiganova IG, Makarova EA et al (2016) Photodynamic Inactivation of Bacteria and Biofilms Using Cationic Bacteriochlorins. In: Journal of Physics: Conference Series. Vol 691. Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/691/1/012011

  24. González IA, Palavecino A, Núñez C et al (2021) Effective treatment against ESBL-producing klebsiella pneumoniae through synergism of the photodynamic activity of Re (I) compounds with beta-lactams. Pharmaceutics 13(11):1889. https://doi.org/10.3390/PHARMACEUTICS13111889

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel) 9(2):1–54. https://doi.org/10.3390/cancers9020019

    Article  CAS  Google Scholar 

  26. Kniebühler G, Pongratz T, Betz CS et al (2013) Photodynamic therapy for cholangiocarcinoma using low dose mTHPC (Foscan®). Photodiagnosis Photodyn Ther 10(3):220–228. https://doi.org/10.1016/J.PDPDT.2012.12.005

    Article  PubMed  Google Scholar 

  27. Perussi JR (2007) Inativação fotodinâmica de microrganismos. Quim Nova 30. https://doi.org/10.1590/S0100-40422007000400039

  28. Noweski A, Roosen A, Lebdai S et al (2019) Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials). Eur Urol Focus 5(6):1022–1028. https://doi.org/10.1016/J.EUF.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Svyatchenko VA, Nikonov SD, Mayorov AP, Gelfond ML, Loktev VB (2021) Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagn Photodyn Ther 33:102112. https://doi.org/10.1016/J.PDPDT.2020.102112

    Article  CAS  Google Scholar 

  30. Casteel MJ, Jayaraj K, Gold A, Ball LM, Sobsey MD (2004) Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem Photobiol 80(2). https://doi.org/10.1562/2004-04-05-RA-134

  31. Uliana MP, Pires L, Pratavieira S et al (2014) Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochem Photobiol Sci 13(8):1137–1145. https://doi.org/10.1039/c3pp50376c

    Article  CAS  PubMed  Google Scholar 

  32. Monteiro P, Amparo M, Faustino F et al (2022) Photodynamic inactivation of microorganisms using semisynthetic chlorophyll a derivatives as photosensitizers. Molecules 27(18):5769. https://doi.org/10.3390/MOLECULES27185769

    Article  Google Scholar 

  33. da Silva AP, Uliana MP, Guimarães FEG et al (2022) Investigation on the in vitro anti-Trichophyton activity of photosensitizers. Photochem Photobiol Sci. Published online March 24, 2022. https://doi.org/10.1007/s43630-022-00205-3

  34. Martins CVB, Da Silva DL, Neres ATM et al (2009) Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother 63(2):337–339. https://doi.org/10.1093/JAC/DKN488

    Article  CAS  PubMed  Google Scholar 

  35. Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA (2011) Curcumin as a promising anticandidal of clinical interest. Can J Microbiol 57(3):204–210. https://doi.org/10.1139/W10-117

    Article  CAS  PubMed  Google Scholar 

  36. Mezzacappo NF, de Souza LM, Inada NM et al (2021) Curcumin/d-mannitol as photolarvicide: induced delay in larval development time, changes in sex ratio and reduced longevity of Aedes aegypti. Pest Manag Sci 77(5):2530–2538. https://doi.org/10.1002/PS.6286

    Article  CAS  PubMed  Google Scholar 

  37. Simplicio FI, Maionchi F, Hioka N (2002) Terapia Fotodinâmica: Aspectos Farmacológicos, Aplicações e Avanços Recentes no Desenvolvimento de Medicamentos. Quim Nova 25(5):801–807

    Article  CAS  Google Scholar 

  38. Pratavieira S, Uliana MP, dos Santos Lopes NS et al (2021) Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies. Photodiagn Photodyn Ther 34(xxxx):102251. https://doi.org/10.1016/j.pdpdt.2021.102251

  39. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55(1):145–157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x

    Article  CAS  PubMed  Google Scholar 

  40. Yano S, Hirohara S, Obata M et al (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12(1):46–67. https://doi.org/10.1016/J.JPHOTOCHEMREV.2011.06.001

    Article  CAS  Google Scholar 

  41. De Oliveira KT, De Souza JM, Da Silva Gobo NR, De Assis FF, Brocksom TJ (2015) Basic concepts and applications of porphyrins, chlorins and phthalocyanines as photosensitizers in photonic therapies. Revista Virtual de Quimica 7(1):310–335. https://doi.org/10.5935/1984-6835.20150016

    Article  Google Scholar 

  42. Chen Q, Huang Z, Luck D et al (2002) Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers. Photochem Photobiol 76(4):438. https://doi.org/10.1562/0031-8655(2002)076%3c0438:psincp%3e2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  43. Uliana MP, da Cruz Rodrigues A, Ono BA, Pratavieira S, de Oliveira KT, Kurachi C (2022) Photodynamic inactivation of microorganisms using semisynthetic chlorophyll a derivatives as photosensitizers. Molecules 27(18). https://doi.org/10.3390/molecules27185769

  44. Menezes PFC, Melo CAS, Bagnato VS, Imasato H, Perussi JR (2005) Dark cytotoxicity of the photoproducts of the photosensitizer Photogem after photobleaching induced by a laser. Laser Physics 15(3):435–442

    CAS  Google Scholar 

  45. Amos-Tautua BM, Songca SP, Oluwafemi OS, Mcphee DJ (2019) Molecules application of porphyrins in antibacterial photodynamic therapy. Molecules. https://doi.org/10.3390/molecules24132456

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang L, Krayer M, Roubil JGS et al (2014) Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broad-spectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations. J Photochem Photobiol B 141:119–127. https://doi.org/10.1016/j.jphotobiol.2014.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berezin DB, Makarov VV, Znoyko SA, Mayzlish VE, Kustov AV (2020) Aggregation of water soluble octaanionic phthalocyanines and their photoinactivation antimicrobial effect in vitro. Mendeleev Commun 30(5):621–623. https://doi.org/10.1016/J.MENCOM.2020.09.023

    Article  CAS  Google Scholar 

  48. Kholikov K, Ilhom S, Sajjad M et al (2018) Improved singlet oxygen generation and antimicrobial activity of sulphur-doped graphene quantum dots coupled with methylene blue for photodynamic therapy applications. Photodiagn Photodyn Ther 24:7–14. https://doi.org/10.1016/j.pdpdt.2018.08.011

    Article  CAS  Google Scholar 

  49. Yang Z, Qiao Y, Li J, Wu FG, Lin F (2020) Novel type of water-soluble photosensitizer from Trichoderma reesei for photodynamic inactivation of gram-positive bacteria. Langmuir 36(44):13227–13235. https://doi.org/10.1021/ACS.LANGMUIR.0C02109/SUPPL_FILE/LA0C02109_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  50. Dias LM, Klein MI, Jordão CC, Carmello JC, Bellini A, Pavarina AC (2020) Successive applications of Antimicrobial Photodynamic Therapy effects the susceptibility of Candida albicans grown in medium with or without fluconazole. Photodiagn Photodyn Ther 32:102018. https://doi.org/10.1016/J.PDPDT.2020.102018

    Article  CAS  Google Scholar 

  51. Santezi C, Reina BD, Dovigo LN (2018) Curcumin-mediated Photodynamic Therapy for the treatment of oral infections—a review. Photodiagn Photodyn Ther 21:409–415. https://doi.org/10.1016/J.PDPDT.2018.01.016

    Article  CAS  Google Scholar 

  52. Dovigo LN, Carmello JC, De Souza Costa CA et al (2013) Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med Mycol 51(3):243–251. https://doi.org/10.3109/13693786.2012.714081

    Article  CAS  PubMed  Google Scholar 

  53. Hassett DJ, Sutton MD, Schurr MJ, Herr AB, Caldwell CC, Matu JO (2009) Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 17(3):130–138. https://doi.org/10.1016/j.tim.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  54. Malik Z, Ladan H, Nitzan Y (1992) Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B 14(3):262–266. https://doi.org/10.1016/1011-1344(92)85104-3

    Article  CAS  PubMed  Google Scholar 

  55. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 44(3):522–527. https://doi.org/10.1128/AAC.44.3.522-527.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infections–state of the art. Photodiagn Photodyn Ther 6(3–4):170–188. https://doi.org/10.1016/J.PDPDT.2009.10.008

    Article  CAS  Google Scholar 

  57. Strakhovskaya MG, Antonenko YN, Pashkovskaya AA et al (2009) Electrostatic binding of substituted metal phthalocyanines to enterobacterial cells: Its role in photodynamic inactivation. Biochem Mosc 74(12):1305–1314. https://doi.org/10.1134/S0006297909120025

    Article  CAS  Google Scholar 

  58. Ehrenberc B, Malik Z (1985) Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli. Cells 41(4):429–435

    Google Scholar 

Download references

Acknowledgements

The authors thank PRPPG-UNILA (Universidade Federal da Integração Latino-Americana) (80/2019-PRPPG; 104/2020-PRPPG; 105/2020-PRPPG; 90/2022-PRPPG and 77/2022-PRPPG); DS-Unila (PROBIU); Fundação Araucária, FAPESP (São Paulo Research Foundation) grant numbers: 2011/19720-8 and CAPES for financial support and fellowships. Thanks are also due to Laura C. A. Martins, Matheus A. Dos Santos and Luciano E. Fernandes for the technical appointment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marciana Pierina Uliana.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rescor: Luiz Henrique Rosa

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz Rodrigues, A., Bilha, J.K., Pereira, P.R.M. et al. Photoinactivation of microorganisms using bacteriochlorins as photosensitizers. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01278-1

Keywords

Navigation