Skip to main content

Arachis hypogaea

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants
  • 657 Accesses

Abstract

Earth Nut, Goober Pea, Groundnut, Mani, Monkey Nut, Peanut, Runner Peanut, Spanish Peanut, Valencia Peanut, Virginia Peanut

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abbott JA, Medina-Bolivar F, Martin EM, Engelberth AS, Villagarcia H, Clausen EC, Carrier DJ (2010) Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnol Prog 26(5):1344–1351

    Google Scholar 

  • Adeyeye EI (2010) Effect of cooking and roasting on the amino acid composition of raw groundnut (Arachis hypogaea) seeds. Acta Sci Pol Technol Aliment 9(2):201–216

    Google Scholar 

  • Akgül M, TozluoÄŸlu A (2008) Utilizing peanut husk (Arachis hypogaea L.) in the manufacture of medium-density fiberboards. Bioresour Technol 99(13):5590–5594

    Google Scholar 

  • Alper CM, Mattes RD (2003) Peanut consumption improves indices of cardiovascular disease risk in healthy adults. J Am Coll Nutr 22(2):133–141

    Google Scholar 

  • Anonymous (2001) Final report on the safety assessment of peanut (Arachis hypogaea) oil, hydrogenated peanut oil, peanut acid, peanut glycerides, and peanut (Arachis hypogaea) flour. Int J Toxicol 20(Suppl 2):65–77

    Google Scholar 

  • Anouar E, Kosinová P, Kozlowski D, Mokrini R, Duroux JL, Trouillas P (2009) New aspects of the antioxidant properties of phenolic acids: a combined theoretical and experimental approach. Phys Chem Chem Phys 11(35):7659–7668

    Google Scholar 

  • Atasie VN, Akinhanmi TF, Ojiodu CC (2009) Proximate analysis and physico-chemical properties of groundnut (Arachis hypogaea L.). Pak J Nutr 8:194–197

    Google Scholar 

  • Awad AB, Chan KC, Downie AC, Fink CS (2000) Peanuts as a source of beta-sitosterol, a sterol with anticancer properties. Nutr Cancer 36(2):238–241

    Google Scholar 

  • Bannon GA, Besler M, Hefle SL, Hourihane JO’B, Sicherer SH (2000) Peanut (Arachis hypogaea). Internet Symp Food Allerg 2(2):87–123. http://www.food-allergens.de

  • Bes-Rastrollo M, Wedick NM, Martinez-Gonzalez MA, Li TY, Sampson L, Hu FB (2009) Prospective study of nut consumption, long-term weight change, and obesity risk in women. Am J Clin Nutr 89(6):1913–1919

    Google Scholar 

  • Bilbis LS, Shehu RA, Abubakar MG (2002) Hypoglycemic and hypolipidemic effects of aqueous extract of Arachis hypogaea in normal and alloxan-induced diabetic rats. Phytomedicine 9(6):553–555

    Google Scholar 

  • Blomhoff R, Carlsen MH, Andersen LF, Jacobs DR (2006) Health benefits of nuts: potential role of antioxidants. Br J Nutr 96:S52–S60

    Google Scholar 

  • Böcker W, Klaubert A, Bahnsen J, Schweikhart G, Pollow K, Mitze M, Kreienberg R, Beck T, Stegner HE (1984) Peanut lectin histochemistry of 120 mammary carcinomas and its relation to tumor type, grading, staging, and receptor status. Virchows Arch A Pathol Anat Histopathol 403(2):149–161

    Google Scholar 

  • Bryant RJ, Rao DR, Ogutu S (2003) Alpha and beta-galactosidase activities and oligosaccharide content in peanuts. Plant Foods Hum Nutr 58(3):213–223

    Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Revised reprint, 2 vols. Ministry of Agriculture and Co-operatives, Kuala Lumpur, Malaysia. vol 1 (A–H), pp 1–1240, vol 2 (I–Z), pp 1241–2444

    Google Scholar 

  • Calderó J, Campo E, Viñas J, Cardesa A (1989) Lectin-binding sites in neoplastic and non-neoplastic colonic mucosa of 1, 2-dimethylhydrazine-treated rats. Lab Invest 61(6):670–676

    Google Scholar 

  • Chang JC, Lai YH;, Djoko B, Wu PL, Liu CH, Liu YW, Chiou RYY (2006) Biosynthesis enhancement and antioxidant and anti-inflammatory activities of peanut (Arachis hypogaea L.) arachidin-1, arachidin-3, and isopentadienylresveratrol. J Agric Food Chem 54(26):10281–10287

    Google Scholar 

  • Chavan JK, Shinde VS, Kadam SS (1991) Utilization of expeller pressed partially defatted peanut cake meal in the preparation of bakery products. Plant Foods Hum Nutr 41(3):253–259

    Google Scholar 

  • Chen RS, Wu PL, Chiou RY (2002) Peanut roots as a source of resveratrol. J Agric Food Chem 50(6):1665–1667

    Google Scholar 

  • Cherif AO, Trabelsi H, Ben Messaouda M, Kâabi B, Pellerin I, Boukhchina S, Kallel H, Pepe C (2010) Gas chromatography-mass spectrometry screening for phyto­chemical 4-desmethylsterols accumulated during development of Tunisian peanut kernels (Arachis hypogaea L.). J Agric Food Chem 58(15):8709–8714

    Google Scholar 

  • Chukwumah YC, Walker LT, Verghese M, Bokanga M, Ogutu S, Alphonse K (2007a) Comparison of extraction methods for the quantification of selected phytochemicals in peanuts (Arachis hypogaea). J Agric Food Chem 55(2):285–290

    Google Scholar 

  • Chukwumah YC, Walker L, Vogler B, Verghese M (2007b) Changes in the phytochemical composition and profile of raw, boiled, and roasted peanuts. J Agric Food Chem 55(22):9266–9273

    Google Scholar 

  • Craft BD, KosiÅ„ska A, Amarowicz R, Pegg RB (2010) Antioxidant properties of extracts obtained from raw, dry-roasted, and oil-roasted US peanuts of commercial importance. Plant Foods Hum Nutr 65(3):311–318

    Google Scholar 

  • Daussant J, Neucere NJ, Yatsu LY (1969) Immunochemical studies on Arachis hypogaea proteins with particular reference to the reserve proteins. I. Characterization, distribution, and properties of α-arachin and α-conarachin. Plant Physiol 44(4):471–479

    Google Scholar 

  • Davis JP, Dean LL, Price KM, Sanders TH (2010) Roast effects on the hydrophilic and lipophilic antioxidant capacities of peanut flours, blanched peanut seed and peanut skins. Food Chem 119:539–547

    Google Scholar 

  • de la Lastra CA, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49(5):405–430

    Google Scholar 

  • Djoko B, Chiou RY, Shee JJ, Liu YW (2007) Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J Agric Food Chem 55(6):2376–2383

    Google Scholar 

  • Dodo HW, Viquez OM, Maleki SJ, Konan KN (2004) cDNA clone of a putative peanut (Arachis hypogaea L.) trypsin inhibitor has homology with peanut allergens Ara h 3 and Ara h 4. J Agric Food Chem 52(5):1404–1409

    Google Scholar 

  • Dorner JW (2008) Management and prevention of mycotoxins in peanuts. Food Addit Contam A Chem Anal Control Expo Risk Assess 25(2):203–208

    Google Scholar 

  • Duh PD, Yeh DB, Yen GC (1992) Extraction and identification of an antioxidative component from peanut hulls. J Am Oil Chem Soc 69(8):814–818

    Google Scholar 

  • Duh PD, Yen GC (1997) Antioxidant efficacy of methanolic extracts of peanut hulls in soybean and peanut oils. J Am Oil Chem Soc 74(6):754–758

    Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York\London, 345 pp

    Google Scholar 

  • Duke JA, Ayensu ES (1985) Medicinal plants of China, vols 1 & 2. Reference Publications, Algonac, 705 pp

    Google Scholar 

  • Edwards C, Strange RN, Cole DL (1995) Accumulation of isoflavonoid phytoalexins in leaves of Arachis hypogaea differing in reaction to rust (Puccinia arachidis) and early leafspot (Cercospora arachidicola). Plant Pathol 44(3):573–579

    Google Scholar 

  • Ellsworth JL, Kushi LH, Folsom AR (2001) Frequent nut intake and risk of death from coronary heart disease and all causes in postmenopausal women: the Iowa Women’s Health Study. Nutr Metab Cardiovasc Dis 11(6):372–377

    Google Scholar 

  • Emekli-Alturfan E, Kasikci E, Yarat A (2007) Peanuts improve blood glutathione, HDL-cholesterol level and change tissue factor activity in rats fed a high-cholesterol diet. Eur J Nutr 46(8):476–482

    Google Scholar 

  • Emekli-Alturfan E, Kasikci E, Yarat A (2008) Peanut (Arachis hypogaea) consumption improves glutathione and HDL-cholesterol levels in experimental diabetes. Phytother Res 22(2):180–184

    Google Scholar 

  • Facciola S (1990) Cornucopia. A source book of edible plants. Kampong Publications, Vista, 677 pp

    Google Scholar 

  • Faraggiana T, Bernstein J, Strauss L, Churg J (1985) Use of lectins in the study of histogenesis of renal cysts. Lab Invest 53(5):575–579

    Google Scholar 

  • Francisco ML, Resurreccion AV (2008) Functional components in peanuts. Crit Rev Food Sci Nutr 48(8):715–746

    Google Scholar 

  • Fu HW, Hai Long Zhang HL, Pei YH (2005) A new coumestan from Arachis hypogaea L. Chin Chem Lett 16(7):918–920

    Google Scholar 

  • Griel AE, Eissenstat B, Juturu V, Hsieh G, Kris-Etherton PM (2004) Improved diet quality with peanut consumption. J Am Coll Nutr 23(6):660–668

    Google Scholar 

  • Guang C, Phillips RD (2009) Purification, activity and sequence of angiotensin I converting enzyme inhibitory peptide from alcalase hydrolysate of peanut flour. J Agric Food Chem 57(21):10102–10106

    Google Scholar 

  • Guillermo S, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2000) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94(12):1963–1971

    Google Scholar 

  • Guler C, Copur Y, Tascioglu C (2008) The manufacture of particleboards using mixture of peanut hull (Arachis hypogaea L.) and European Black pine (Pinus nigra Arnold) wood chips. Bioresour Technol 99(8):2893–2897

    Google Scholar 

  • Hill AF (1952) Economic botany, 2nd edn. McGraw-Hill, New York, 560 pp

    Google Scholar 

  • Hochstrasser K, Feuth H, Werle E (1972) The isolation and characterisation of a lipase inhibitor from the lipids of Arachis hypogaea. Hoppe-Seyler’s Z Physiol Chem 353(6):855–860 (In German)

    Google Scholar 

  • Hourihane JO, Bedwani SJ, Dean TP, Warner JO (1997) Randomised, double blind, crossover challenge study of allergenicity of peanut oils in subjects allergic to peanuts. Br Med J 314(7087):1084–1088

    Google Scholar 

  • Hu FB, Stampfer MJ (1999) Nut consumption and risk of coronary heart disease: a review of epidemiologic evidence. Curr Atheroscler Rep 1(3):204–209

    Google Scholar 

  • Hu FB, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, Speizer FE, Hennekens CH, Willett WC (1998) Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 317(7169):1341–1345

    Google Scholar 

  • Huang SC, Yen GC, Chang LW, Yen WJ, Duh PD (2003) Identification of an antioxidant, ethyl protocatechuate, in peanut seed testa. J Agric Food Chem 51(8):2380–2383

    Google Scholar 

  • Hwang JY, Shue YS, Chang HM (2001) Antioxidative activity of roasted and defatted peanut kernels. Food Res Int 34:639–647

    Google Scholar 

  • Hwang JY, Wang YT, Shyu YS, Wu JS (2008) Antimutagenic and antiproliferative effects of roasted and defatted peanut dregs on human leukemic U937 and HL-60 cells. Phytother Res 22(3):286–290

    Google Scholar 

  • Ibern-Gómez M, Roig-Pérez S, Lamuela-Raventós RM, de la Torre-Boronat MC (2000) Resveratrol and piceid levels in natural and blended peanut butters. J Agric Food Chem 48(12):6352–6354

    Google Scholar 

  • Isanga J, Zhang GN (2007) Biologically active ­components and nutraceuticals in peanuts and related products: review. Food Rev Int 23:123–140

    Google Scholar 

  • Jacques H, Leblanc N, Papineau R, Richard D, Côté CH (2010) Peanut protein reduces body protein mass and alters skeletal muscle contractile properties and lipid metabolism in rats. Br J Nutr 103(9):1331–1339

    Google Scholar 

  • Jamieson GS, Haughman WF, Brauns DH (1921) The chemical composition of peanut oil. J Am Chem Soc 43(6):1372–1381

    Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Google Scholar 

  • Jang M, Pezzuto JM (1999) Cancer chemopreventive activity of resveratrol. Drugs Exp Clin Res 25(2–3):65–77

    Google Scholar 

  • Jenkins DJA, Hu FB, Tapsell LC, Josse AR, Kendall CWC (2008) Possible benefit of nuts in type 2 diabetes. J Nutr 138:1752S–1756S

    Google Scholar 

  • Jiang R, Manson JE, Stampfer MJ, Liu S, Willet WC, Hu FB (2002) Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 288(20):2554–2560

    Google Scholar 

  • Jimsheena VK, Gowda LR (2010) Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors: structure-activity relationship. Peptides 31(6):1165–1176

    Google Scholar 

  • Kannon G, Park HK (1990) Utility of peanut agglutinin (PNA) in the diagnosis of squamous cell carcinoma and keratoacanthoma. Am J Dermatopathol 12(1):31–36

    Google Scholar 

  • Kaprovickas A (1969) The origin, variability, and spread of the groundnut (Arachis hypogaea). In: Ucko PJ, Dimbley JW (eds) The domestication and exploitation of plants and animals. Aldine, Chicago, pp 427–441

    Google Scholar 

  • King JC, Blumberg J, Ingwersen L, Jenab M, Tucker KL (2008) Tree nuts and peanuts as components of a healthy diet. J Nutr 138:1736S–1740S

    Google Scholar 

  • Klein PJ, Vierbuchen M, Fischer J, Ortmann M, Uhlenbruck G, Fischer R (1982) The pathogenetic importance of peanut lectin binding sites in infectious, toxic and neoplastic processes. Immun Infekt 10(4):151–158 (In German)

    Google Scholar 

  • Kris-Etherton PM, Hu FB, Ross E, Sabaté J (2008) The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr 138:1746S–1751S

    Google Scholar 

  • Kritchevsky D, Tepper SA, Klurfeld DM (1998) Lectin may contribute to the atherogenicity of peanut oil. Lipids 33(8):821–823

    Google Scholar 

  • Kritchevsky D, Tepper SA, Klurfeld DM, Vesselinovitch D, Wissler RW (1994) Experimental atherosclerosis in rabbits fed cholesterol-free diets. Part 12. Comparison of peanut and olive oils. Atherosclerosis 50(3):253–259

    Google Scholar 

  • Ku KL, Chang PS, Cheng YC, Lien CY (2005) Production of stilbenoids from the callus of Arachis hypogaea: a novel source of the anticancer compound piceatannol. J Agric Food Chem 53(10):3877–3881

    Google Scholar 

  • Lasne C, Nguyen-Ba G, Oueslatti R, Chouroulinkov I (1991) Inhibition of chemically-induced skin carcinogenesis in mice by peanut oil preparations. Bull Cancer 78(3):237–247

    Google Scholar 

  • Li Q, Zhai J, Zhang W, Wang M, Zhou J (2007) Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater 141(1):163–167

    Google Scholar 

  • Li TY, Brennan AM, Wedick NM, Mantzoros C, Rifai N, Hu FB (2009) Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J Nutr 139(7):1333–1338

    Google Scholar 

  • Lin LL, Lien CY, Cheng YC, Ku KL (2007) An effective sample preparation approach for screening the anticancer compound piceatannol using HPLC coupled with UV and fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci 853(1–2):175–182

    Google Scholar 

  • Lokko P, Lartey A, Armar-Klemesu M, Mattes RD (2007) Regular peanut consumption improves plasma lipid levels in healthy Ghanaians. Int J Food Sci Nutr 58(3):190–200

    Google Scholar 

  • Lou H, Yuan H, Ma B, Ren D, Ji M, Oka S (2004) Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 65(16):2391–2399

    Google Scholar 

  • Lou H, Yuan H, Yamazaki Y, Sasaki T, Oka S (2001) Alkaloids and flavonoids from peanut skins. Planta Med 67(4):345–349

    Google Scholar 

  • Martin FW, Ruberté RM (1975) Edible leaves of the tropics. Agency for International Development Department of State, and the Agricultural Research Service, U.S. Department of Agriculture, United States, 235 pp

    Google Scholar 

  • Mattes RD, Kris-Etherton PM, Foster GD (2008) Impact of peanuts and tree nuts on body weight and healthy weight loss in adults. J Nutr 138(9):1741S–1745S

    Google Scholar 

  • Mody R, Joshi S, Chaney W (1995) Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods 33(1):1–10

    Google Scholar 

  • Mohanty K, Das D, Biswas MN (2008) Utilization of Arachis hypogaea hull, an agricultural waste for the production of activated carbons to remove phenol from aqueous solutions. J Environ Sci Health B 43(5):452–463

    Google Scholar 

  • Monagas M, Garrido I, Lebrón-Aguilar R, Gómez-Cordovés MC, Rybarczyk A, Amarowicz R, Bartolomé B (2009) Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. J Agric Food Chem 57(22):10590–10599

    Google Scholar 

  • Moreno DA, Ilic N, Poulev A, Raskin I (2006) Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sci 78:2797–2803

    Google Scholar 

  • Nadkarni KM, Nadkarni AK (1982) Indian Materia Medica with Ayurvedic, Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic & Home remedies, vol 2, 2nd edn. Sangam Books, Bombay

    Google Scholar 

  • Nepote V, Grosso NR, Guzman CA (2004) Radical scavenging activity of extracts of Argentine peanut skins (Arachis hypogaea) in relation to its trans-resveratrol content. J Argent Chem Soc 92(4–6):41–49

    Google Scholar 

  • Ng TB, Au TK, Lam TL, Ye XY, Wan DC (2002) Inhibitory effects of antifungal proteins on human immunodeficiency virus type 1 reverse transcriptase, protease and integrase. Life Sci 70(8):927–935

    Google Scholar 

  • Norioka S, OmichI K, Ikenaka T (1982) Purification and characterization of protease inhibitors from peanuts (Arachis hypogaea). J Biochem 91(4):1427–1434

    Google Scholar 

  • Ochse JJ, Bakhuizen van den Brink RC (1980) Vegetables of the Dutch Indies, 3rd edn. Ascher & Co, Amsterdam, 1016 pp

    Google Scholar 

  • Ortíz B, Bacilio M, Gorocica P, Montaño LF, Garfias Y, Zenteno E (2000) The hydrophobic character of peanut (Arachis hypogaea) isoagglutinins. J Agric Food Chem 48:6267–6270

    Google Scholar 

  • Ozcan MM (2010) Some nutritional characteristics of kernel and oil of peanut (Arachis hypogaea L.). J Oleo Sci 59(1):1–5

    Google Scholar 

  • Parveen S, Gupta AD, Prasad R (2007) Arabinogalactan protein from Arachis hypogaea: role as carrier in drug-formulations. Int J Pharm 333(1–2):79–86

    Google Scholar 

  • Pham TS, Rudner EJ (2000) Peanut allergy. Cutis 65(5):285–289

    Google Scholar 

  • Pitt JI, Hocking AD (2006) Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia 162(3):233–243

    Google Scholar 

  • Pravst I, Žmitek K, Žmitek J (2010) Coenzyme Q10 contents in foods and fortification strategies. Crit Rev Food Sci Nutr 50(4):269–280

    Google Scholar 

  • Rehman ZU (2003) Evaluation of antioxidant activity of methanolic extract from peanut hulls in fried potato chips. Plant Foods Hum Nutr 58(1):75–83

    Google Scholar 

  • Ren S, Salinas SD (2010) Tribe aeschynomeneae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol. 10. Fabaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Rougé P, Culerrier R, Granier C, Rancé F, Barre A (2010) Characterization of IgE-binding epitopes of peanut (Arachis hypogaea) PNA lectin allergen cross-reacting with other structurally related legume lectins. Mol Immunol 47(14):2359–2366

    Google Scholar 

  • Ryder SD, Parker N, Ecclestone D, Haqqani MT, Rhodes JM (1994) Peanut lectin stimulates proliferation in colonic explants from patients with inflammatory bowel disease and colon polyps. Gastroenterology 106(1):117–124

    Google Scholar 

  • Ryder SD, Smith JA, Rhodes JM (1992) Peanut lectin: a mitogen for normal human colonic epithelium and human HT29 colo­rectal cancer cells. J Natl Cancer Inst 84(18):1410–1416

    Google Scholar 

  • Sanders TH, McMichael RW Jr, Hendrix KW (2000) Occurrence of resveratrol in edible peanuts. J Agric Food Chem 48(4):243–246

    Google Scholar 

  • Scurlock AM, Burks AW (2004) Peanut allergenicity. Ann Allergy Asthma Immunol 93(5 Suppl 3):S12–S18

    Google Scholar 

  • Shimizu-Ibuka A, Udagawa H, Kobayashi-Hattori K, Mura K, Tokue C, Takita T, Arai S (2009) Hypocholesterolemic effect of peanut skin and its fractions: a case record of rats fed on a high-cholesterol diet. Biosci Biotechnol Biochem 73(1):205–208

    Google Scholar 

  • Shin EC, Pegg RB, Phillips RD, Eitenmiller RR (2010) Commercial peanut (Arachis hypogaea L.) cultivars in the United States: phytosterol composition. J Agric Food Chem 58(6):9137–9146

    Google Scholar 

  • Sobolev VS (2001) Vanillin content in boiled peanuts. J Agric Food Chem 49(8):3725–3727

    Google Scholar 

  • Sobolev VS, Cole RJ (1999) Trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem 47:1435–1439

    Google Scholar 

  • Sobolev VS, Cole RJ (2004) Note on utilisation of peanut seed testa. J Sci Food Agric 84:105–111

    Google Scholar 

  • Sobolev VS, Deyrup ST, Gloer JB (2006b) New peanut (Arachis hypogaea) phytoalexin with prenylated benzenoid and but-2-enolide moieties. J Agric Food Chem 54(6):2111–2115

    Google Scholar 

  • Sobolev VS, Neff SA, Gloer JB (2009) New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain. J Agric Food Chem 57(1):62–68

    Google Scholar 

  • Sobolev VS, Neff SA, Gloer JB (2010) New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds. J Agric Food Chem 58(2):875–881

    Google Scholar 

  • Sobolev VS, Potter TL, Horn BW (2006a) Prenylated stilbenes from peanut root mucilage. Phytochem Anal 17(5):312–322

    Google Scholar 

  • Supornsilchaia V, Svechnikova K, Seidlova-Wuttkeb D, Wuttkeb W, Söder O (2005) Phytoestrogen resveratrol suppresses steroidogenesis by rat adrenocortical cells by inhibiting cytochrome P450 c21-hydroxylase. Horm Res 64:280–286

    Google Scholar 

  • Talcott ST, Duncan CE, Del Pozo-Insfran D, Gorbet DW (2005a) Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem 89:77–84

    Google Scholar 

  • Talcott ST, Passeretti S, Duncan CE, Gorbet DW (2005b) Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem 90:379–388

    Google Scholar 

  • Tate PV, Chavan JK, Patil PB, Kadam SS (1990) Processing of commercial peanut cake into food-grade meal and its utilization in preparation of cookies. Plant Foods Hum Nutr 40(2):115–121

    Google Scholar 

  • TokuÅŸoglu O, Unal MK, YemiÅŸ F (2005) Determination of the phytoalexin resveratrol (3,5,4′-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). J Agric Food Chem 53(12):5003–5009

    Google Scholar 

  • Tsai CJ, Leitzmann MF, Hu FB, Willett WC, Giovannucci EL (2004a) A prospective cohort study of nut consumption and the risk of gallstone disease in men. Am J Epidemiol 160(10):961–968

    Google Scholar 

  • Tsai CJ, Leitzmann MF, Hu FB, Willett WC, Giovannucci EL (2004b) Frequent nut consumption and decreased risk of cholecystectomy in women. Am J Clin Nutr 80(1):76–81

    Google Scholar 

  • Tur-Sinai A, Birk Y, Gertler A, Rigbi M (1972) A basic trypsin- and chymotrypsin-inhibitor from groundnuts (Arachis hypogaea). Biochim Biophys Acta Protein Struct 263(3):666–672

    Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (2010) USDA National Nutrient Database for Standard Reference, Release 23. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/main/site_main.htm?modecode=12-35-45-00

  • Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 6(8):445–454

    Google Scholar 

  • Walker RA, Hawkins RA, Miller WR (1985) Lectin binding and steroid receptors in human breast carcinomas. J Pathol 147(2):103–106

    Google Scholar 

  • Wang KH, Lai YH, Chang JC, Ko TF, Shyu SL, Chiou RY (2005) Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. J Agric Food Chem 53(2):242–246

    Google Scholar 

  • Wang S, Shao B, Rao P, Lee Y, Ye X (2007) Hypotin, a novel antipathogenic and antiproliferative protein from peanuts with a sequence similar to those of chitinase precursors. J Agric Food Chem 55(24):9792–9799

    Google Scholar 

  • Weiss EA (1983) Oilseed crops. Longman, London, 660 pp

    Google Scholar 

  • Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obes 24(6):758–764

    Google Scholar 

  • Ye XY, Ng TB (2001) Hypogin, a novel antifungal peptide from peanuts with sequence similarity to peanut allergen. J Pept Res 57(4):330–336

    Google Scholar 

  • Yeh CC, You SL, Chen CJ, Sung FC (2006) Peanut consumption and reduced risk of colorectal cancer in women: a prospective study in Taiwan. World J Gastroenterol 12(2):222–227

    Google Scholar 

  • Yen GC, Dur PD (1993) Antioxidative properties of methanolic extracts from peanut hulls. J Am Oil Chem Soc 70(4):383–386

    Google Scholar 

  • Yen GC, Dur PD (1995) Antioxidative properties of methanolic extracts of peanut hulls from various cultivars. J Am Oil Chem Soc 72(9):1065–1067

    Google Scholar 

  • Yen GC, Duh PD (1996) Antimutagenic effect of methanolic extracts from peanut hulls. Biosci Biotechnol Biochem 60(10):1698–1700

    Google Scholar 

  • Yu JM, Ahmedna M, Goktepe P (2005) Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem 90:199–206

    Google Scholar 

  • Yu JM, Ahmedna M, Goktepe I, Dai JA (2006) Peanut skin procyanidins: composition and antioxidant activities as affected by processing. J Food Compos Anal 19:364–371

    Google Scholar 

  • Yu JM, Ahmedna M, Goktepe I (2007) Peanut protein concentrate: production and functional properties as affected by processing. Food Chem 103:121–129

    Google Scholar 

  • Zhang X, Ling L, Dai R (1990) Constituents of the seed coat of Arachis hypogaea L. Zhongguo Zhong Yao Za Zhi 15(6):356–358 (In Chinese)

    Google Scholar 

  • Zu XY, Zhang ZY, Liu JQ, Hu HH, Xing GQ, Zhang Y, Guan D (2010) Sedative effects of peanut (Arachis hypogaea L.) leaf aqueous extracts on brain ATP, AMP, adenosine and glutamate/GABA of rats. J Biomed Sci Eng 3:268–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lim, T.K. (2012). Arachis hypogaea. In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1764-0_67

Download citation

Publish with us

Policies and ethics