... Fp groups of cations of the type ( 20a , b ) has also been investigated by variable - temperature n.m.r. spectroscopy ; fluxional behaviour still persists at -90 ° C.122 R Cp Cp H R R 11 + + Fe Fe Fp Fp Fp . Fp OC OC R H ( 20a ) ( 20b ) ...
... Fe , ( CO ) , C.H. , 80 ° C Fe ( CO ) , Fe- ( CO ) , ( 47 ) ( 48 ) Fe - Fe- ( CO ) , ( CO ) , H ( CO ) , Fe- -Fe ... Fp ) ] and [ Cr ( CO ) , ( no- C6H5CH2Fp ) ] [ Fp = Fe ( CO ) 2Cp ] are produced on heating Cr ( CO ) , with FpPh ...
... FE ΝΑ ... . FP NA . NA FP FP ... ... NA NA NA NA .. .. .. .. .. .. NA NA .. .. FP ... FP FE ... FP FP ... FP ... NA NA ΝΑ .. .. FP ... NA .. FP ... NA .. FP ... FP FE ... ΝΑ FE FP NA NA ::: ... FE FP NA ...
... FP " can be written as the union FE " U FE ” -1 U FE - 2 U ... U FE2 U FE1 U FEo , FPn = where FEO is a point . ... = ( 2.15 ) PROOF . This theorem follows from that fact that for a division algebra F the space FP " can be written as ...
Level , Pay Plan Grade , or Tenure Expires Pay FE FE FE FE FE FE FE FE FP FE FA FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FP FE FE FE FE FE FE FP FE FE FE FE FE FE FE FE FE FE FE FE FE FP FE FE FE FE FE ...
... (Fp ) −1 [((∇ Fp )v)u − ((∇ F p )u)v]. (18) Let us introduce the elastic connections associated with respect to ... (Fe)−1∇K Fe, = Fe∇ χ (Fe)−1. d (19) ( ) = F−1 (∇χ L)[F,F] dt From the above definitions together with (9) ...
... FP , FE , and Fr respectively . A functorial refinement F : MOD1 → MOD2 between correct ( resp . R - correct ) module specifications MOD1 , MOD2 is called coherent ( resp . R - coherent ) if we have in addition ( 4 ) SEMI FIFE SEM2 O O ...
... Fp Fe Ff R T Fd Fg Do Fc Ds 0 OnS Gb Fd Hf Dp Hf Du Eb Fg b Ft Fo Do Fu Fk Fo Fh Fu Cd Ce Fu He Ha Ea Pc Ff Fc Gb Fu HEGb Fv Fe II Fo Gb ד Ha Do Ea Fo Gb He Fd Fp Fd พ Fn Ft Dt 0 FC Ea G Oa FC 11 W Fu Full Fv 11 11 Gb 1 Ex Fu ( Eb ) Fc ...
... fe ° fp = fε + p ( 13.19 ) In fact , for every A € LX , ( fe ° fp ) ( A ) = fe ( fp ( A ) ) = Ru ( fp ( A ) ) — e ' ( 13.20 ) Since u ( f , ( A ) ) = V { s ЄR : f , ( A ) ≤ L , ' } = V { SER : Ru ( A ) -e ≤ Lg ' } , and we have SO Ru ...